Comparative analysis of electron acceleration by Gaussian and cosh-Gaussian laser pulses in homogeneous plasma through laser wakefield acceleration

L. Devi, H.K. Malik, Self-focusing and defocusing phenomena of super-Gaussian laser beams in plasmas carrying density gradient. J. Opt. 25(3), 035401 (2023)

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

Article  ADS  Google Scholar 

H.K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01413-5

Article  Google Scholar 

M. Hashemzadeh, Terahertz radiation generation by Hermite-cosh Gaussian and Hollow Gaussian laser beams in magnetized inhomogeneous plasmas. Braz. J. Phys. 53(2), 46 (2023)

Article  ADS  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43(1), 30 (2022)

Article  ADS  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2155330

Article  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant Terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17(1), 381–388 (2022)

Article  Google Scholar 

S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt. Quantum Electron. 55(3), 281 (2023)

Article  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112 (2022)

Article  Google Scholar 

S. Kumar, V. Thakur, N. Kant, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98(8), 085506 (2023)

Article  ADS  Google Scholar 

S. Kumar, N. Kant, V. Thakur, Magnetically tuned THz radiation through the HA-HA-CNTs under the effect of a transverse electric field. Indian J. Phys. (2023). https://doi.org/10.1007/s12648-023-02849-y

V. Thakur, N. Kant, S. Kumar, THz field enhancement under the influence of cross-focused laser beams in the m-CNTs. Trends Sci. 20(6), 5284 (2023)

Article  Google Scholar 

H.K. Midha, V. Sharma, N. Kant, V. Thakur, Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01563-6

Article  Google Scholar 

V. Sharma, V. Thakur, N. Kant, Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt. Quantum Electron. 52(10), 444 (2020)

Article  Google Scholar 

V. Thakur, N. Kant, Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (Stuttg) 168, 159–164 (2018)

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (Stuttg) 142, 455–462 (2017)

Article  ADS  Google Scholar 

V. Thakur, S. Vij, V. Sharma, N. Kant, Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (Stuttg) 171, 523–528 (2018)

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. (Beijing) 11(4), 115202 (2016)

Article  ADS  Google Scholar 

V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

Article  Google Scholar 

H.R. Askari, A. Shahidani, Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Optik – Int. J. Light Electron. Opt. 124(17), 3154–3161 (2013)

Article  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01250-6

Article  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron. 55(13), 1150 (2023)

Article  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration. Zeitschrift für Naturforschung A (2023). https://doi.org/10.1515/zna-2023-0238

Article  Google Scholar 

T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

Article  ADS  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Excitation of the laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01326-3

Article  Google Scholar 

E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009)

Article  ADS  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023)

Article  ADS  Google Scholar 

D.N. Gupta, M. Yadav, A. Jain, S. Kumar, Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse. Phys. Lett. Sect. A: Gen. Atom. Solid State Phys. 414, 127631 (2021)

Article  MathSciNet  Google Scholar 

V. Sharma, N. Kant, V. Thakur, Optimizing laser-driven electron acceleration with sinh-squared Gaussian pulses. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01649-1

Article  Google Scholar 

V. Sharma, N. Kant, V. Thakur, Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma. Opt. Quantum Electron. 56(4), 601 (2024)

Article  Google Scholar 

V. Sharma, N. Kant, V. Thakur, Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt. Quantum Electron. 56(1), 45 (2024)

Article  Google Scholar 

D.N. Gupta, S.R. Yoffe, A. Jain, B. Ersfeld, D.A. Jaroszynski, Propagation of intense laser pulses in plasma with a prepared phase-space distribution. Sci. Rep. 12(1), 20368 (2022)

Article  ADS  Google Scholar 

R. Fallah, S.M. Khorashadizadeh, Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses. Contrib. Plasma Phys. 58(9), 878–889 (2018)

Article  ADS  Google Scholar 

A. Jain, D.N. Gupta, Optimization of electron bunch quality using a chirped laser pulse in laser wakefield acceleration. Phys. Rev. Accel. Beams 24(11), 111302 (2021)

Article  ADS  Google Scholar 

H.S. Ghotra, Laser wakefield and direct laser acceleration of electron by chirped laser pulses. Optik (Stuttg) 260, 169080 (2022)

Article  ADS  Google Scholar 

M. Abedi-Varaki, N. Kant, Magnetic field-assisted wakefield generation and electron acceleration by Gaussian and super-Gaussian laser pulses in plasma. Mod. Phys. Lett. B 36(07), 2150604 (2022)

Article  ADS  MathSciNet  Google Scholar 

R. Fallah, S.M. Khorashadizadeh, Influence of Gaussian, super-Gaussian, and cosine-Gaussian pulse properties on the electron acceleration in a homogeneous plasma. IEEE Trans. Plasma Sci. 46(6), 2085–2090 (2018)

Article  ADS  Google Scholar 

M. Yadav, D.N. Gupta, S.C. Sharma, Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27(9), 093106 (2020)

Article  Google Scholar 

K. Gopal, D.N. Gupta, H. Suk, Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49(3), 1152–1158 (2021)

Article  ADS  Google Scholar 

P. Kad, A. Singh, Electron acceleration and spatio–temporal variation of Laguerre-Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137(8), 885 (2022)

Article  Google Scholar 

T. Tajima, X.Q. Yan, T. Ebisuzaki, Wakefield acceleration. Rev. Mod. Plasma Phys. 4(1), 7 (2020)

Article  ADS  Google Scholar 

P. Jha, A. Saroch, R.K. Mishra, A.K. Upadhyay, Laser wakefield acceleration in magnetized plasma. Phys. Rev. Spec. Top. Accel Beams 15(8), 081301 (2012)

Article  ADS  Google Scholar 

A. Kumar, N. Kant, H.S. Ghotra, Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse. Opt. Quantum Electron. 53(11), 617 (2021)

Article  Google Scholar 

P. Jha, A. Saroch, N. Kumar Verma, Wakefield generation via two color laser pulses. Phys. Plasmas 20(5), 053102 (2013)

Article  ADS  Google Scholar 

F. Albert, A.G.R. Thomas, Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control Fusion 58(10), 103001 (2016)

Article  ADS  Google Scholar 

M. Singh, R.K. Singh, R.P. Sharma, THz generation by cosh-Gaussian lasers in a rippled density plasma. EPL (Europhys. Lett.) 104(3), 35002 (2013)

Article  ADS 

留言 (0)

沒有登入
gif