Performance and stability of different all-inorganic and hybrid organic-inorganic perovskites in p-n planar device structure FTO/SnO2/Perovskite/Cu2O/Carbon using SCAPS-1D simulation

S. Yadav, P. Lohia, A. Sahu, Impact of generation recombination rate in STO enabled (FA)2BiCuI6 based double perovskite solar cell without HTL. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01535-w

Article  Google Scholar 

H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, I. Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8

Article  ADS  Google Scholar 

R. Jaiswal, R. Ranjan, N. Srivastava, A.K. Sharma, M. Yoshimura, L. Chang, R.N. Tiwari, Numerical study of eco-friendly Sn-based Perovskite solar cell with 25.48% efficiency using SCAPS-1D. J. Mater. Sci.: Mater. Electron. 34, 753 (2023). https://doi.org/10.1007/s10854-023-10171-w

Article  Google Scholar 

M.S. Uddin, A. Al, M.G.F. Ishraque, T. Rahul, P. Muhammad, O. Saidani, K. Chandran, M. Ouladsmane, M.K. Hossain, Lead free Ge based perovskite solar cell incorporating and Cu2O charge transport layers harnessing over 25% efficiency. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01570-7

Article  Google Scholar 

S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee, S.-J. Park, A review on Interface Engineering of MXenes for Perovskite Solar cells. Nanomicro Lett. 15, 123 (2023). https://doi.org/10.1007/s40820-023-01083-9

Article  ADS  Google Scholar 

J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng, Y. Chen, Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization. J. Power Sources. 485, 229313 (2021). https://doi.org/10.1016/j.jpowsour.2020.229313

Article  Google Scholar 

T.I. Alanazi, O.I. Eid, M. Okil, Numerical study of flexible perovskite/Si tandem solar cell using TCAD simulation. Opt. Quantum Electron. 55, 1–19 (2023). https://doi.org/10.1007/s11082-023-05320-8

Article  Google Scholar 

K. Ahmad, H. Kim, Materials Science & Engineering B Improved photovoltaic performance and stability of perovskite solar cells with device structure of (ITO/ SnO2 /CH3NH3PbI3/rGO + spiro-MeOTAD/Au). Mater. Sci. Eng. B 289, 116227 (2023). https://doi.org/10.1016/j.mseb.2022.116227

Article  Google Scholar 

N. Sivakumar, S. Saha, R. Madaka, N. Bandaru, J.K. Rath, Investigation on the structural, spectral, and optical properties of MAPbI3.H2O and MAPbI3 perovskite crystals for photovoltaic cells. J. Mater. Sci.: Mater. Electron. 34, 1–14 (2023). https://doi.org/10.1007/s10854-023-10607-3

Article  Google Scholar 

K. Mishra, R.K.C. Rajan, Performance optimization of lead free inorganic perovskite solar cell using SCAPS 1D. Journal of Optics. (2023). https://doi.org/10.1007/s12596-023-01466-6

N. Kumar, J. Rani, R. Kurchania, Advancement in CsPbBr3 inorganic perovskite solar cells: fabrication, efficiency and stability. Sol. Energy. 221, 197–205 (2021). https://doi.org/10.1016/j.solener.2021.04.042

Article  ADS  Google Scholar 

N.A.N. Ouedraogo, Y. Chen, Y.Y. Xiao, Q. Meng, C.B. Han, H. Yan, Y. Zhang, Stability of all-inorganic perovskite solar cells. Nano Energy. 67, 104249 (2020). https://doi.org/10.1016/j.nanoen.2019.104249

Article  Google Scholar 

W. Yao, S. Fang, Y. Wang, Z. Hu, L. Huang, X. Liu, T. Jiang, J. Zhang, J. Wang, Y. Zhu, Suppression of hysteresis in all-inorganic perovskite solar cells by the incorporation of PCBM. Appl. Phys. Lett. 118 (2021). https://doi.org/10.1063/5.0042663

R. Sun, D. Zhou, Y. Wang, W. Xu, N. Ding, L. Zi, X. Zhuang, X. Bai, H. Song, Highly efficient ligand-modified manganese ion doped CsPbCl3 perovskite quantum dots for photon energy conversion in silicon solar cells. Nanoscale. 12, 18621–18628 (2020). https://doi.org/10.1039/D0NR04885B

Article  Google Scholar 

S. Ullah, J. Wang, P. Yang, L. Liu, S.-E. Yang, T. Xia, H. Guo, Y. Chen, All-inorganic CsPbBr3 perovskite: a promising choice for photovoltaics. Mater. Adv. 2, 646–683 (2021). https://doi.org/10.1039/D0MA00866D

Article  Google Scholar 

H. Yao, J. Zhao, Z. Li, Z. Ci, Z. Jin, Research and progress of black metastable phase CsPbI3 solar cells. Mater. Chem. Front. 5, 1221–1235 (2021). https://doi.org/10.1039/D0QM00756K

Article  Google Scholar 

L. Lin, L. Jiang, P. Li, H. Xiong, Z. Kang, B. Fan, Y. Qiu, Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Sol. Energy. 198, 454–460 (2020). https://doi.org/10.1016/j.solener.2020.01.081

Article  ADS  Google Scholar 

M. Alla, S. Bimli, V. Manjunath, M. Samtham, A. Kasaudhan, E. Choudhary, M. Rouchdi, F. Boubker, Towards lead-free all-inorganic perovskite solar cell with theoretical efficiency approaching 23%. Mater. Technol. 37, 2963–2969 (2022). https://doi.org/10.1080/10667857.2022.2091195

Article  ADS  Google Scholar 

S. Rawat, J. Madan, R. Pandey, Exploring the Efficiency of CsSnCl3 Perovskite Solar Cells: An Analysis of Absorber Layer Thickness and Defect Density Using 1D-SCAPS Tool. In: 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN). pp. 1–4. IEEE (2023). https://doi.org/10.1109/ViTECoN58111.2023.10157560

S. Khatoon, S. Kumar Yadav, V. Chakraborty, J. Singh, R. Bahadur Singh, A simulation study of all inorganic lead-free CsSnBr3 tin halide perovskite solar cell. Mater Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.04.167

B.K. Ravidas, M.K. Roy, D.P. Samajdar, Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: First Principle calculations and SCAPS-1D analysis. Sol. Energy. 249, 163–173 (2023). https://doi.org/10.1016/j.solener.2022.11.025

Article  ADS  Google Scholar 

M. Haghighi, N. Ghazyani, S. Mahmoodpour, R. Keshtmand, A. Ghaffari, H. Luo, R. Mohammadpour, N. Taghavinia, M. Abdi-Jalebi, Low-temperature Processing methods for Tin Oxide as Electron Transporting Layer in Scalable Perovskite Solar cells. Solar RRL. 7 (2023). https://doi.org/10.1002/solr.202201080

S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n–i–p Perovskite Solar cells. Adv. Mater. 34 (2022). https://doi.org/10.1002/adma.202110438

M.I. Hossain, B. Aïssa, A. Bentouaf, S.A. Mansour, Bandgap tuning of high mobility Magnetron Sputtered copper (I) Oxide Thin films for Perovskite Solar Cell Applications. J. Thin Films Res. 5, 51–54 (2021). https://doi.org/10.30799/jtfr.026.21050101

Article  Google Scholar 

S. Imani, S.M. Seyed-Talebi, J. Beheshtian, E.W.G. Diau, Simulation and characterization of CH3NH3SnI3-based perovskite solar cells with different Cu-based hole transporting layers. Appl. Phys. Mater. Sci. Process. 129 (2023). https://doi.org/10.1007/s00339-023-06428-0

S. Chatterjee, A.J. Pal, Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120, 1428–1437 (2016). https://doi.org/10.1021/acs.jpcc.5b11540

Article  Google Scholar 

W. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, B. Lin, L. Wang, M.N. Hedhili, Y. Li, K. Wu, X. Wang, O.F. Mohammed, T. Wu, Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale. 8, 6173–6179 (2016). https://doi.org/10.1039/c5nr07758c

Article  ADS  Google Scholar 

Z. Kothandapani, M.A. Islam, Y. Reza, A.A.Q. Hasan, A.A. Alkahtani, N. Amin, Optimization of Cu2O and CuSCN as HTL of planar perovskite solar cells via numerical simulation. J. Ovonic Res. 16, 369–377 (2020). https://doi.org/10.15251/JOR.2020.166.369

Article  Google Scholar 

L. Lin, L. Jiang, P. Li, H. Xiong, Z. Kang, B. Fan, Y. Qiu, Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells, (2020). https://doi.org/10.1016/j.solener.2020.01.081

S. Maryam, N. Mufti, A. Fuad, Y. Adi Setio Laksono, A. Taufiq, Sunaryono, The effect of Cu2O thickness in Perovskite Solar Cell to Power Conversion Efficiency and its Stability. IOP Conf. Ser. Earth Environ. Sci. 276, 012035 (2019). https://doi.org/10.1088/1755-1315/276/1/012035

Article  Google Scholar 

Y. Yu, M.T. Hoang, Y. Yang, H. Wang, Critical assessment of carbon pastes for carbon electrode-based perovskite solar cells. Carbon N Y. 205, 270–293 (2023). https://doi.org/10.1016/j.carbon.2023.01.046

Article  Google Scholar 

H. Chen, S. Yang, Carbon-based Perovskite Solar cells without hole transport materials: the Front Runner to the market? Adv. Mater. 29 (2017). https://doi.org/10.1002/adma.201603994

Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu, J. Ouyang, J. Chang, Recent progress of Electrode materials for flexible Perovskite Solar cells. Nanomicro Lett. 14, 1–30 (2022). https://doi.org/10.1007/s40820-022-00859-9

Article  ADS  Google Scholar 

L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12, 3437–3472 (2019). https://doi.org/10.1039/c9ee02115a

Article  Google Scholar 

A. Singh, V. Srivastava, S. Singh, S. Sadanand, Rai, P. Lohia, D.K. Dwivedi, S. Agarwal, M. Ouladsmane, M.K. Hossain, Optimization of highly efficient inorganic lead-free double perovskite solar cells via SCAPS-1D. Journal of Optics (India). (2023). https://doi.org/10.1007/s12596-023-01440-2

P. Ritu, V. Kumar, R. Kumar, F. Chand, A theoretical comparison of MAPbI3, FAPbI3 and (FAPbI3)1–xMAPb(Br3 – yCly)x based solar cells. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01474-6

Article  Google Scholar 

El Y. Arfaoui, M. Khenfouch, N. Habiballah, HTL-free non-toxic perovskite tandem solar device MAGeI3/FASnI3 with 25.69% efficiency: design and simulation using SCAPS. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01647-3

Article  Google Scholar 

P. Chauhan, S. Agarwal, V. Srivastava, S. Maurya, M.K. Hossain, J. Madan, R.K. Yadav, P. Lohia, D.K. Dwivedi, A.A. Alothman, Impact on generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer. Prog. Photovoltaics Res. Appl. 32, 156–171 (2024). https://doi.org/10.1002/pip.3743

Article  Google Scholar 

L.-J. Chen, C.-R. Lee, Y.-J. Chuang, Z.-H. Wu, C. Chen, Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with high-performance solar cell application. J. Phys. Chem. Lett. 7, 5028–5035 (2016). https://doi.org/10.1021/acs.jpclett.6b02344

Article  Google Scholar 

H. Arbouz, Optimization of lead-free CsSnI3-based perovskite solar cell structure. Appl. Rheology. 33 (2023). https://doi.org/10.1515/arh-2022-0138

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, H. Han, Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH = NH2PbI 3. J. Mater. Chem. A 2, 17115–17121 (2014). https://doi.org/10.1039/C4TA03741C

Article  Google Scholar 

S. Samaki, F. Tchangnwa Nya, G.M. Dzifack Kenfack, A. Laref, Materials and interfaces properties optimization for high-efficient and more stable RbGeI3 perovskite solar cells: optoelectrical modelling. Sci. Rep. 13, 15517 (2023). https://doi.org/10.1038/s41598-023-42471-w

留言 (0)

沒有登入
gif