Inflammation-induced TRPV4 channels exacerbate blood–brain barrier dysfunction in multiple sclerosis

Izquierdo G, Hauw JJ, Lyon-Caen O, Marteau R, Escourolle R, Buge A, et al. Clinical analysis of 70 neuropathologic cases of multiple sclerosis. Rev Neurol (Paris). 1985;141(8–9):546–52.

CAS  PubMed  Google Scholar 

Kilsdonk ID, Lopez-Soriano A, Kuijer JP, de Graaf WL, Castelijns JA, Polman CH, et al. Morphological features of MS lesions on FLAIR* at 7 T and their relation to patient characteristics. J Neurol. 2014;261(7):1356–64.

Article  PubMed  Google Scholar 

Van Der Valk P, De Groot CJA. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol. 2000;26(1):2–10.

Article  PubMed  Google Scholar 

Van Waesberghe JHTM, Kamphorst W, De Groot CJA, Van Walderveen MAA, Castelijns JA, Ravid R, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol. 1999;46(5):747–54.

Article  PubMed  Google Scholar 

Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 2003;161(3):653–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Chen Z, Chin I, Chen Z, Dai H. The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions. Curr Neuropharmacol. 2018;16(9):1375–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, et al. Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis. 2015;74:14–24.

Article  CAS  PubMed  Google Scholar 

Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12(2):154–69.

Article  PubMed  Google Scholar 

Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA, et al. Adenosine triphosphate-binding cassette transporters mediate chemokine (C–C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain. 2011;134(Pt 2):555–70.

Article  PubMed  Google Scholar 

Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 2012;33(12):579–89.

Article  CAS  PubMed  Google Scholar 

Vos CMP, Geurts JJG, Montagne L, van Haastert ES, Bö L, van der Valk P, et al. Blood–brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis. 2005;20(3):953–60.

Article  CAS  PubMed  Google Scholar 

Stone LA, Smith ME, Albert PS, Bash CN, Maloni H, Frank JA, McFarland HF. Blood-brain barrier disruption on contrast-enhanced MRI in patients with mild relapsing-remitting multiple sclerosis: relationship to course, gender, and age. Neurology. 1995;45(6):1122–6.

Article  CAS  PubMed  Google Scholar 

Davalos D, Kyu Ryu J, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3(1):1227.

Article  PubMed  Google Scholar 

Yates RL, Esiri MM, Palace J, Jacobs B, Perera R, DeLuca GC. Fibrin(ogen) and neurodegeneration in the progressive multiple sclerosis cortex. Ann Neurol. 2017;82(2):259–70.

Article  CAS  PubMed  Google Scholar 

Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HBW. Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. NeuroImage Clin. 2014;4:182–9.

Article  CAS  PubMed  Google Scholar 

Berghoff SA, Düking T, Spieth L, Winchenbach J, Stumpf SK, Gerndt N, et al. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun. 2017;5(1):94.

Article  PubMed  PubMed Central  Google Scholar 

Abbott NJ. Role of intracellular calcium in regulation of brain endothelial permeability. Cambridge: University Press; 1998.

Book  Google Scholar 

De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, et al. Endothelial calcium dynamics, connexin channels and blood–brain barrier function. Prog Neurobiol. 2013;108:1–20.

Article  PubMed  Google Scholar 

Kubicka-Baczyk K, Labuz-Roszak B, Pierzchala K, Adamczyk-Sowa M, Machowska-Majchrzak A. Calcium-phosphate metabolism in patients with multiple sclerosis. J Endocrinol Invest. 2015;38(6):635–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilhelm I, Farkas AE, Nagyőszi P, Váró G, Bálint Z, Végh GA, et al. Regulation of cerebral endothelial cell morphology by extracellular calcium. Phys Med Biol. 2007;52(20):6261.

Article  CAS  PubMed  Google Scholar 

De Bock M, Culot M, Wang N, da Costa A, Decrock E, Bol M, et al. Low extracellular Ca2+ conditions induce an increase in brain endothelial permeability that involves intercellular Ca2+ waves. Brain Res. 2012;1487:78–87.

Article  PubMed  Google Scholar 

Abbott NJ. Inflammatory Mediators and Modulation of Blood-Brain Barrier Permeability. Cell Mol Neurobiol. 2000;20(2):131–47.

Article  CAS  PubMed  Google Scholar 

de Vries HE, Blom-Roosemalen MCM, Mv O, de Boer AG, van Berkel TJC, Breimer DD, Kuiper J. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996;64(1):37–43.

Article  PubMed  Google Scholar 

Rakkar K, Bayraktutan U. Increases in intracellular calcium perturb blood–brain barrier via protein kinase C-alpha and apoptosis. Biochim Biophys Acta Mol Basis Dis. 1862;1:56–71.

Google Scholar 

Brown RC, O’Neil RG. Mechanosensitive calcium fluxes in the neurovascular unit: TRP channel regulation of the blood-brain barrier. In: Kamkim A, Kiseleva I, editors. Mechanosensitivity of the nervous system: forewords by nektarios tavernarakis and pontus persson. Dordrecht: Springer; 2009. p. 321–43.

Chapter  Google Scholar 

Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflügers Arch Eur J Physiol. 2010;459(6):881–95.

Article  CAS  Google Scholar 

Schampel A, Kuerten S. Danger: high voltage-the role of voltage-gated calcium channels in central nervous system pathology. Cells. 2017;6(4):43.

Article  PubMed  PubMed Central  Google Scholar 

Brown RC, Wu L, Hicks K, O’Neil RG. Regulation of blood-brain barrier permeability by transient receptor potential type C and type V calcium-permeable channels. Microcirculation. 2008;15(4):359–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagnell AM, Sumner CJ, McCray BA. TRPV4: a trigger of pathological RhoA activation in neurological disease. BioEssays. 2022;44(6): e2100288.

Article  PubMed  PubMed Central  Google Scholar 

Ramirez GA, Coletto LA, Sciorati C, Bozzolo EP, Manunta P, Rovere-Querini P, Manfredi AA. Ion channels and transporters in inflammation: special focus on TRP channels and TRPC6. Cells. 2018;7(7):70.

Article  PubMed  PubMed Central  Google Scholar 

Çiğ B, Derouiche S, Jiang LH. Editorial: emerging roles of TRP channels in brain pathology. Front Cell Dev Biol. 2021;9: 705196.

Article  PubMed  PubMed Central  Google Scholar 

Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB. Ca 2+ signaling, TRP channels, and endothelial permeability. Microcirculation. 2006;13(8):693–708.

Article  CAS  PubMed  Google Scholar 

Zheng X, Zinkevich NS, Gebremedhin D, Gauthier KM, Nishijima Y, Fang J, et al. Arachidonic acid-induced dilation in human coronary arterioles: convergence of signaling mechanisms on endothelial TRPV4-mediated Ca2+ entry. J Am Heart Assoc. 2013;2(3): e000080.

Article  PubMed  PubMed Central  Google Scholar 

Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424(6947):434–8.

Article  CAS  PubMed  Google Scholar 

Darby WG, Potocnik S, Ramachandran R, Hollenberg MD, Woodman OL, McIntyre P. Shear stress sensitizes TRPV4 in endothelium-dependent vasodilatation. Pharmacol Res. 2018;133:152–9.

Article  CAS  PubMed  Google Scholar 

Michalick L, Kuebler WM. TRPV4: a missing link between mechanosensation and immunity. Front Immunol. 2020;11:413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif