Regulation of the PFK1 gene on the interspecies microbial competition behavior of Saccharomyces cerevisiae

Agarwal PK, Uppada V, Noronha SB (2013) Comparison of pyruvate decarboxylases from Saccharomyces cerevisiae and Komagataella pastoris (Pichia pastoris). Appl Microbiol Biotechnol 97(21):9439–9449

Article  CAS  PubMed  Google Scholar 

Arroyo-López F, Salvadó Z, Tronchoni J, Guillamón JM, Barrio E, Querol A (2010) Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Yeast 27:1005–1015

Article  PubMed  Google Scholar 

Arvanitidis A, Heinisch JJ (1994) Studies on the function of yeast phosphofructokinase subunits by in vitro mutagenesis. J Biol Chem 269(12):8911–8918

Article  CAS  PubMed  Google Scholar 

Buziol S, Warth L, Magario I, Freund A, Siemann-Herzberg M, Reuss M (2008) Dynamic response of the expression of hxt1, hxt5 and hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration. J Biotechnol 134(3–4):203–210

Article  CAS  PubMed  Google Scholar 

DangThu Q, Jang SH, Lee C (2020) Biochemical comparison of two glucose 6-phosphate dehydrogenase isozymes from a cold-adapted Pseudomonas mandelii. Extremophiles 24(4):501–509

Article  CAS  PubMed  Google Scholar 

Dong SJ, Lin XH, Li H (2015) Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. Int J Biochem Cell Biol 68:33–41

Article  CAS  PubMed  Google Scholar 

Dumorné K, Córdova DC, Astorga-Eló M, Renganathan P (2017) Extremozymes: a potential source for industrial applications. J Microbiol Biotechnol 27(4):649–659

Article  PubMed  Google Scholar 

Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24:833–845

Article  CAS  PubMed  Google Scholar 

Granato ET, Meiller-Legrand TA, Foster KR (2019) The evolution and ecology of bacterial warfare. Curr Biol 29(11):R521–R537

Article  CAS  PubMed  Google Scholar 

Guan N, Li J, Shin HD, Du G, Chen J, Liu L (2017) Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 101(10):3991–4008

Article  CAS  PubMed  Google Scholar 

He XL, Liu B, Xu YL, Chen Z, Li H (2021) Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 105(6):2597–2611

Article  CAS  PubMed  Google Scholar 

Heinemann M, Sauer U (2010) Systems biology of microbial metabolism. Curr Opin Microbiol 13(3):337–343

Article  CAS  PubMed  Google Scholar 

Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hohmann S (1991) PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr Genet 20(5):373–378

Article  CAS  PubMed  Google Scholar 

Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9(4):305–319

Article  CAS  PubMed  Google Scholar 

Jansen MLA, Diderich JA, Mashego M, Hassane A, de Winde JH, Daran-Lapujade P, Pronk JT (2005) Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology (reading) 151(Pt 5):1657–1669

Article  CAS  PubMed  Google Scholar 

Jin J, Nguyen T, Humayun S, Park S, Oh H, Lim S (2021) Characteristics of sourdough bread fermented with Pediococcus pentosaceus and Saccharomyces cerevisiae and its bio-preservative effect against Aspergillus flavus. Food Chem 345:128787

Article  CAS  PubMed  Google Scholar 

Kang X (2022) Regulation of glucose metabolism on oxidative stress tolerance of Saccharomyces cerevisiae. Beijing University of Chemical Technology, China

Google Scholar 

Kang X, Gao ZH, Zheng LJ, Zhang XR, Li H (2021) Regulation of Lactobacillus plantarum on the reactive oxygen species related metabolisms of Saccharomyces cerevisiae. LWT-Food Sci Technol 147:111492

Article  CAS  Google Scholar 

Ke W, Chang S, Chen XJ, Luo SZ, Jiang ST, Yang PZ, Wu XF, Zheng Z (2015) Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686. Bioprocess Biosyst Eng 38(11):2189–99

Article  CAS  PubMed  Google Scholar 

Khonsari AS, Kollmann M (2015) Perception and regulatory principles of microbial growth control. PLoS One 10(5):e0126244

Article  PubMed  PubMed Central  Google Scholar 

Kotte O, Zaugg JB, Heinemann M (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6:355

Article  PubMed  PubMed Central  Google Scholar 

Lacerda MP, Oh EJ, Eckert C (2020) The model system Saccharomyces cerevisiae versus emerging non-model yeasts for the production of biofuels. Life (basel) 10:299

CAS  PubMed  Google Scholar 

Li YJ, Tian CJ, Tian H, Zhang JL, He X, Ping WX, Lei H (2012) Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl Microbiol Biotechnol 96(6):1479–1487

Article  CAS  PubMed  Google Scholar 

Liu B, Liu HQ, Zhang YX, Li H (2017) Control of Lactobacillus plantarum contamination in bioethanol fermentation by adding plantaricins. Int J Agri Biol 19:171–176

Google Scholar 

Madhavan A, Arun KB, Sindhu R, Krishnamoorthy J, Reshmy R, Sirohi R, Pugazhendi A, Awasthi MK, Szakacs G, Binod P (2021) Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 20:124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathew F, Goyal A (2023) Ethanol. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan

Mithran M, Paparelli E, Novi G, Perata P, Loreti E (2014) Analysis of the role of the pyruvate decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant Biol (stuttg) 16(1):28–34

Article  CAS  PubMed  Google Scholar 

Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nissen P, Nielsen D, Arneborg N (2003) The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures. Appl Microbiol Biotechnol 64(4):543–550

Article  PubMed  Google Scholar 

Olivares-Marin IK, González-Hernández JC, Regalado-Gonzalez C, Madrigal-Perez LA (2018) Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. J vis Exp 139:58192

Google Scholar 

Pandhal J, Noirel J (2014) Synthetic microbial ecosystems for biotechnology. Biotechnol Lett 36(6):1141–1151

Article  CAS  PubMed  Google Scholar 

Papagianni M, Avramidis N (2011) Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzyme Microb Technol 49(2):197–202

Article  CAS  PubMed  Google Scholar 

Park EY, Naruse K, Kato T (2012) One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):64

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patra M, Salonen E, Terama E, Vattulainen I, Faller R, Lee BW, Holopainen J, Karttunen M (2006) Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J 90(4):1121–1135

Article  CAS  PubMed  Google Scholar 

Pina C, Santos C, Couto JA, Hogg T (2004) Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiol 21:439–447

Article  CAS  Google Scholar 

Raj SB, Ramaswamy S, Plapp BV (2014) Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 53(36):5791–5803

Article  CAS  PubMed  Google Scholar 

Randez-Gil F, Sánchez-Adriá IE, Estruch F, Prieto JA (2020) The formation of hybrid complexes between isoenzymes of glyceraldehyde-3-phosphate dehydrogenase regulates its aggregation state, the glycolytic activity and sphingolipid status in Saccharomyces cerevisiae. Microb Biotechnol 13(2):562–571

Article  CAS  PubMed  Google Scholar 

Sabater-Muñoz B, Mattenberger F, Fares MA, Toft C (2020) Transcriptional rewiring, adaptation, and the role of gene duplication in the metabolism of ethanol of Saccharomyces cerevisiae. mSystems 5(4):e00416-20

Article  PubMed 

留言 (0)

沒有登入
gif