The exon junction complex is required for DMD gene splicing fidelity and myogenic differentiation

Wilkinson ME, Charenton C, Nagai K (2020) RNA splicing by the spliceosome. Annu Rev Biochem 89:359–388. https://doi.org/10.1146/annurev-biochem-091719-064225

Article  CAS  PubMed  Google Scholar 

De Conti L, Baralle M, Buratti E (2013) Exon and intron definition in pre-mRNA splicing. WIREs RNA 4:49–60. https://doi.org/10.1002/wrna.1140

Article  CAS  PubMed  Google Scholar 

Fu XD, Ares M (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15:689–701. https://doi.org/10.1038/nrg3778

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437–451. https://doi.org/10.1038/nrm.2017.27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20:4987–4997. https://doi.org/10.1093/emboj/20.17.4987

Article  PubMed  PubMed Central  Google Scholar 

Busetto V, Barbosa I, Basquin J, Marquenet É, Hocq R, Hennion M, Paternina JA, Namane A, Conti E, Bensaude O, Le Hir H (2020) Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes. Nucleic Acids Res 48:5670–5683. https://doi.org/10.1093/nar/gkaa267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlautmann LP, Gehring NH (2020) A Day in the Life of the Exon Junction Complex. Biomolecules 10:866. https://doi.org/10.3390/biom10060866

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashi R, Handler D, Ish-Horowicz D, Brennecke J (2014) The exon junction complex is required for definition and excision of neighboring introns in drosophila. Genes Dev 28:1772–1785. https://doi.org/10.1101/gad.245738.114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shiimori M, Inoue K, Sakamoto H (2013) A specific set of exon junction complex subunits is required for the nuclear retention of unspliced RNAs in caenorhabditis elegans. Mol Cell Biol 33:444–456. https://doi.org/10.1128/MCB.01298-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Murigneux V, Le Hir H (2014) Transcriptome-wide modulation of splicing by the exon junction complex. Genome Biol 15:551. https://doi.org/10.1186/s13059-014-0551-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashton-Beaucage D, Udell CM, Lavoie H, Baril C, Lefrançois M, Chagnon P, Gendron P, Caron-Lizotte O, Bonneil É, Thibault P, Therrien M (2010) The exon junction complex controls the splicing of mapk and other long intron-containing transcripts in drosophila. Cell 143:251–262. https://doi.org/10.1016/j.cell.2010.09.014

Article  CAS  PubMed  Google Scholar 

Roignant JY, Treisman JE (2010) Exon junction complex subunits are required to splice drosophila map kinase, a large heterochromatic gene. Cell 143:238–250. https://doi.org/10.1016/j.cell.2010.09.036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Ballut L, Barbosa I, Le Hir H (2018) Exon junction complexes can have distinct functional flavours to regulate specific splicing events. Sci Rep 8:9509. https://doi.org/10.1038/s41598-018-27826-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung CS, Johnson TL (2018) The exon junction complex: a multitasking guardian of the transcriptome. Mol Cell 72:799–801. https://doi.org/10.1016/j.molcel.2018.11.030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boehm V, Britto-Borges T, Steckelberg AL, Sing KK, Gerbracht JV, Gueney E, Blazquez L, Altmüller J, Dieterich C, Gehring NH (2018) Exon junction complexes suppress spurious splice sites to safeguard transcriptome integrity. Mol Cell 72:482-495.e7. https://doi.org/10.1016/j.molcel.2018.08.030

Article  CAS  PubMed  Google Scholar 

Blazquez L, Emmett W, Faraway R, Pineda JMB, Bajew S, Gohr A, Haberman N, Sibley CR, Bradley RK, Irimia M, Ule J (2018) Exon junction complex shapes the transcriptome by repressing recursive splicing. Mol Cell 72:496-509.e9. https://doi.org/10.1016/j.molcel.2018.09.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joseph B, Lai EC (2021) The exon junction complex and intron removal prevent re-splicing of mRNA. PLOS Genet 17:e1009563. https://doi.org/10.1371/journal.pgen.1009563

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murachelli AG, Ebert J, Basquin C, Le Hir H, Conti E (2012) The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nat Struct Mol Biol 19:378–386. https://doi.org/10.1038/nsmb.2242

Article  CAS  PubMed  Google Scholar 

Otani Y, Fujita K, Kameyama T, Mayeda A (2021) The exon junction complex core represses cancer- specific mature mRNA re-splicing: a potential key role in terminating splicing. Int J Mol Sci 22:6519. https://doi.org/10.3390/ijms22126519

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2:731–740. https://doi.org/10.1016/s1474-4422(03)00585-4

Article  CAS  PubMed  Google Scholar 

Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A (2021) Duchenne muscular dystrophy. Nat Rev Dis Primer 7:13. https://doi.org/10.1038/s41572-021-00248-3

Article  Google Scholar 

Naidoo M, Anthony K (2020) Dystrophin Dp71 and the neuropathophysiology of duchenne muscular dystrophy. Mol Neurobiol 57:1748–1767. https://doi.org/10.1007/s12035-019-01845-w

Article  CAS  PubMed  Google Scholar 

Bougé AL, Murauer E, Beyne E, Miro J, Varilh J, Taulan M, Koenig M, Claustres M, Tuffery-Giraud S, (2017) Targeted RNA-Seq profiling of splicing pattern in the DMD gene: exons are mostly constitutively spliced in human skeletal muscle. Sci Rep 7:39094. https://doi.org/10.1038/srep39094

Article  CAS  PubMed  Google Scholar 

Miro J, Bougé AL, Murauer E, Beyne E, Da Cunha D, Claustres M, Koenig M, Tuffery-Giraud S, (2020) First Identification of RNA-binding proteins that regulate alternative exons in the dystrophin gene. Int Mol Sci 21:7803. https://doi.org/10.3390/ijms21207803

Article  CAS  Google Scholar 

Mamchaoui K, Trollet C, Bigot A, Negroni E, Chaouch S, Wolff A et al (2011) Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle 1:34. https://doi.org/10.1186/2044-5040-1-34

Article  PubMed  PubMed Central  Google Scholar 

Miro J, Laaref AM, Rofidal V, Lagrafeuille R, Hem S, Thorel D, Méchin D, Mamchaoui K, Mouly V, Claustres M, Tuffery-Giraud S (2015) FUBP1: a new protagonist in splicing regulation of the DMD gene. Nucleic Acids Res 43:2378–2389. https://doi.org/10.1093/nar/gkv086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pervouchine DD, Knowles DG, Guigo R (2013) Intron-centric estimation of alternative splicing from RNA- seq data. Bioinformatics 29:273–274. https://doi.org/10.1093/bioinformatics/bts678

Article  CAS  PubMed  Google Scholar 

Garrido-Martín D, Palumbo E, Guigó R, Breschi A, (2018) ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLOS Comput Biol 14:e1006360. https://doi.org/10.1371/journal.pcbi.1006360

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, Khalil M, Féasson L, Cances C, Cottalorda J, Desguerre I, Cuisset JM, Sabouraud P, Lacampagne A, Chevassus H, Rivier F, Carnac G (2021) Skeletal ryanodine receptors are involved in impaired myogenic differentiation in duchenne muscular dystrophy patients. Int J Mol Sci 22:12985. https://doi.org/10.3390/ijms222312985

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yi Z, Sanjeev M, Singh G (2021) The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 37:143–159. https://doi.org/10.1016/j.tig.2020.08.010

Article  CAS  PubMed  Google Scholar 

Kano S, Nishida K, Kurebe H, Nishiyama C, Kita K, Akaike Y, Kajita K, Kurokawa K, Masuda K, Kuwano Y, Tanahashi T, Rokutan K (2014) Oxidative stress-inducible truncated serine/arginine-rich splicing factor 3 regulates interleukin-8 production in human colon cancer cells. Am J Physiol Cell Physiol 306:C250–C262. https://doi.org/10.1152/ajpcell.00091.2013

Article  CAS  PubMed 

留言 (0)

沒有登入
gif