Threonine fuels glioblastoma through YRDC-mediated codon-biased translational reprogramming

Tan, A. C. et al. Management of glioblastoma: state of the art and future directions. CA Cancer J. Clin. 70, 299–312 (2020).

Article  PubMed  Google Scholar 

Mathur, R. et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 187, 446–463 (2024).

Article  CAS  PubMed  Google Scholar 

Gimple, R. C., Yang, K., Halbert, M. E., Agnihotri, S. & Rich, J. N. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat. Rev. Cancer 22, 497–514 (2022).

Article  CAS  PubMed  Google Scholar 

Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saba, J. A., Liakath-Ali, K., Green, R. & Watt, F. M. Translational control of stem cell function. Nat. Rev. Mol. Cell Biol. 22, 671–690 (2021).

Article  CAS  PubMed  Google Scholar 

Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

Article  CAS  PubMed  Google Scholar 

Dedon, P. C. & Begley, T. J. Dysfunctional tRNA reprogramming and codon-biased translation in cancer. Trends Mol. Med. 28, 964–978 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thiaville, P. C., Iwata-Reuyl, D. & de Crecy-Lagard, V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t6A), a universal modification of tRNA. RNA Biol. 11, 1529–1539 (2014).

Article  PubMed  Google Scholar 

Arrondel, C. et al. Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway–Mowat syndrome. Nat. Commun. 10, 3967 (2019).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Hidalgo San Jose, L. & Signer, R. A. J. Cell-type-specific quantification of protein synthesis in vivo. Nat. Protoc. 14, 441–460 (2019).

Article  CAS  PubMed  Google Scholar 

Zhai, K. et al. Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. Nat. Cancer 2, 1136–1151 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. & Rich, J. N. Cancer stem cells in glioblastoma. Genes Dev. 29, 1203–1217 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suva, M. L. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards, L. M. et al. Gradient of developmental and injury response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. Nat. Cancer 2, 157–173 (2021).

Article  CAS  PubMed  Google Scholar 

Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

Article  CAS  PubMed  Google Scholar 

Asghar, U., Witkiewicz, A. K., Turner, N. C. & Knudsen, E. S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 14, 130–146 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Crecy-Lagard, V. et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res. 47, 2143–2159 (2019).

Article  PubMed  PubMed Central  Google Scholar 

MacLeod, G. et al. Genome-wide CRISPR–Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Rep. 27, 971–986 (2019).

Article  CAS  PubMed  Google Scholar 

Toledo, C. M. et al. Genome-wide CRISPR–Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in glioblastoma stem-like cells. Cell Rep. 13, 2425–2439 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 22, 343 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7, 2719–2727 (2021).

Article  Google Scholar 

Mack, S. C. et al. Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. J. Exp. Med. 216, 1071–1090 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

Article  PubMed  Google Scholar 

Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vellai, T. How the amino acid leucine activates the key cell-growth regulator mTOR. Nature 596, 192–194 (2021).

Article  ADS  CAS  PubMed  Google Scholar 

Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

Article  CAS  PubMed  Google Scholar 

Kandasamy, P., Gyimesi, G., Kanai, Y. & Hediger, M. A. Amino acid transporters revisited: new views in health and disease. Trends Biochem. Sci. 43, 752–789 (2018).

Article  CAS  PubMed  Google Scholar 

Chen, G. & Wang, J. Threonine metabolism and embryonic stem cell self-renewal. Curr. Opin. Clin. Nutr. Metab. Care 17, 80–85 (2014).

CAS  PubMed  Google Scholar 

Edgar, A. J. The human l-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet. 3, 18 (2002).

Article  PubMed  PubMed Central  Google Scholar 

Ogawa, H., Gomi, T. & Fujioka, M. Serine hydroxymethyltransferase and threonine aldolase: are they identical? Int. J. Biochem. Cell Biol. 32, 289–301 (2000).

Article  CAS  PubMed  Google Scholar 

Wang, J. T. et al. Commonality and diversity in tRNA substrate recognition in t6A biogenesis by eukaryotic KEOPSs. Nucleic Acids Res. 50, 2223–2239 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy, F. V. T., Ramakrishnan, V., Malkiewicz, A. & Agris, P. F. The role of modifications in codon discrimination by tRNALysUUU. Nat. Struct. Mol. Biol. 1

留言 (0)

沒有登入
gif