Exploring the therapeutic potential of Anastatica hierochuntica essential oil in DSS-induced colitis

Adachi M, Kurotani R, Morimura K et al (2006) Peroxisome proliferator activated receptor γ in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55:1104–1113. https://doi.org/10.1136/GUT.2005.081745

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alex P, Zachos NC, Nguyen T et al (2009) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15:341–352. https://doi.org/10.1002/IBD.20753

Article  PubMed  Google Scholar 

Ali BH, Baker RK, Mohammd TU, Hassn HA (2013) Anastatica hierochuntica L. used as an alternative of conjugated estrogen (premarin) in rabbit females council for innovative research. J J Adv Chem 9:1783–1786

Article  Google Scholar 

Alqudah A, AbuDalo R, Qnais E et al (2023) Potential anti-inflammatory activity of the Anastatica hierochuntica essential oil. J Essent Oil Res 35:1–10. https://doi.org/10.1080/10412905.2022.2118878

Article  CAS  Google Scholar 

Bashashati M, Habibi RH, Keshavarzian A et al (2015) Intestinal microbiota: a regulator of intestinal inflammation and cardiac ischemia?. Curr Drug Targets 16(3):199–208

Article  CAS  PubMed  Google Scholar 

Bauer C, Duewell P, Mayer C et al (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59:1192–1199. https://doi.org/10.1136/GUT.2009.197822

Article  CAS  PubMed  Google Scholar 

Celinski K, Dworzanski T, Korolczuk A et al (2011) Effects of peroxisome proliferator-actvated receptors-γamma ligands on dextran sodium sulphate-induced colitis in rats. J Physiol Pharmacol 62:347–356

CAS  PubMed  Google Scholar 

Coskun M, Vermeire S, Nielsen OH (2017) Novel targeted therapies for inflammatory bowel disease. Trends Pharmacol Sci 38:127–142. https://doi.org/10.1016/J.TIPS.2016.10.014

Article  CAS  PubMed  Google Scholar 

Cosnes J, Gowerrousseau C, Seksik P, Cortot A (2011) Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140:1785-1794.e4. https://doi.org/10.1053/J.GASTRO.2011.01.055

Article  PubMed  Google Scholar 

Dahham SS, Tabana YM, Ahamed MBK, Majid AMSA (2016) In vivo anti-inflammatory activity of β-caryophyllene evaluated by molecular imaging. Mol Med Chem. https://doi.org/10.14800/mmc.1001

Article  Google Scholar 

Desreumaux P, Dubuquoy L, Nutten S et al (2001) Attenuation of colon inflammation through activators of the retinoid X Receptor (Rxr)/peroxisome proliferator-activated receptor γ (Pparγ) heterodimera basis for new therapeutic strategies. J Exp Med 193:827–838. https://doi.org/10.1084/JEM.193.7.827

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dieleman LA, Hoentjen F, Qian BF et al (2004) Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats. Clin Exp Immunol 136:30–39. https://doi.org/10.1111/J.1365-2249.2004.02410.X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. https://doi.org/10.1146/ANNUREV.IMMUNOL.021908.132612

Article  CAS  PubMed  Google Scholar 

Dubuquoy L, Rousseaux C, Thuru X et al (2006) PPARγ as a new therapeutic target in inflammatory bowel diseases. Gut 55:1341–1349. https://doi.org/10.1136/GUT.2006.093484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, Wang Y, Wang P et al (2018) Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem 49:190–205. https://doi.org/10.1159/000492853

Article  CAS  PubMed  Google Scholar 

Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 103(10):241–247. https://doi.org/10.1038/ni.1703

Article  CAS  Google Scholar 

Fukuda T, Majumder K, Zhang H et al (2016) Adenine inhibits TNF-α signaling in intestinal epithelial cells and reduces mucosal inflammation in a dextran sodium sulfate-induced colitis mouse model. J Agric Food Chem 64:4227–4234. https://doi.org/10.1021/ACS.JAFC.6B00665/SUPPL_FILE/JF6B00665_SI_001.PDF

Article  CAS  PubMed  Google Scholar 

Garside P (1999) Cytokines in experimental colitis. Clin Exp Immunol 118:337. https://doi.org/10.1046/J.1365-2249.1999.01088.X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerova VA, Stoynov SG, Katsarov S et al (2011) Increased intestinal permeability in inflammatory bowel diseases assessed by iohexol test. World J Gastroenterol 17:2211. https://doi.org/10.3748/wjg.v17.i17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Håkansson Å, Tormo-Badia N, Baridi A et al (2015) Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med 15:107–120. https://doi.org/10.1007/S10238-013-0270-5/FIGURES/7

Article  PubMed  Google Scholar 

Haque MR, Ansari SH (2019) Aromatic aldehyde compound cuminaldehyde protects nonalcoholic fatty liver disease in rats feeding high fat diet. Hum Exp Toxicol 823–832. https://doi.org/10.1177/0960327119842248

Article  PubMed  Google Scholar 

Ji KL, Gan XQ, Xu YK et al (2016) Protective effect of the essential oil of Zanthoxylum myriacanthum var. pubescens against dextran sulfate sodium-induced intestinal inflammation in mice. Phytomedicine 23:883–890. https://doi.org/10.1016/J.PHYMED.2016.05.006

Article  CAS  PubMed  Google Scholar 

Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nat 4747351(474):307–317. https://doi.org/10.1038/nature10209

Article  CAS  Google Scholar 

Kim DH, Cheon JH (2017) Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. Immune Netw 17:25–40. https://doi.org/10.4110/IN.2017.17.1.25

Article  PubMed  PubMed Central  Google Scholar 

Kim H, Banerjee N, Sirven MA et al (2017) Pomegranate polyphenolics reduce inflammation and ulceration in intestinal colitis—involvement of the miR-145/p70S6K1/HIF1α axis in vivo and in vitro. J Nutr Biochem 43:107–115. https://doi.org/10.1016/J.JNUTBIO.2017.02.005

Article  CAS  PubMed  Google Scholar 

Kim MG, Kim SM, Min JH et al (2019) Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int Immunopharmacol 74:105706. https://doi.org/10.1016/J.INTIMP.2019.105706

Article  CAS  PubMed  Google Scholar 

Kobayashi Y, Kovacs-Nolan J, Matsui T, Mine Y (2015) The Anti-atherosclerotic dipeptide, Trp-His, reduces intestinal inflammation through the blockade of L-type Ca2+ channels. J Agric Food Chem 63:6041–6050. https://doi.org/10.1021/ACS.JAFC.5B01682/SUPPL_FILE/JF5B01682_SI_001.PDF

Article  CAS  PubMed  Google Scholar 

Korinek M, Handoussa H, Tsai YH et al (2021) Anti-inflammatory and antimicrobial volatile oils: fennel and cumin inhibit neutrophilic inflammation via regulating calcium and MAPKs. Front Pharmacol 12:674095. https://doi.org/10.3389/FPHAR.2021.674095/BIBTEX

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kucharzik T, Walsh SV, Chen J et al (2001) Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol 159:2001–2009. https://doi.org/10.1016/S0002-9440(10)63051-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laukoetter MG, Bruewer M, Nusrat A (2006) Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol 22:85–89. https://doi.org/10.1097/01.MOG.0000203864.48255.4F

Article  PubMed  Google Scholar 

Li D, Feng Y, Tian M et al (2021) Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation. Microbiome 9:1–22. https://doi.org/10.1186/S40168-021-01028-7/FIGURES/7

Article  CAS  Google Scholar 

Lin T, Chen L, Yang X et al (2022) NLRP3 and gut microbiota homeostasis: progress in research. Cells 11:3758. https://doi.org/10.3390/CELLS11233758

Article  Google Scholar 

Liu K, Chen Q, Liu Y et al (2012) Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. J Food Sci. https://doi.org/10.1111/J.1750-3841.2012.02924.X

Article  PubMed  Google Scholar 

Lu A, Magupalli VG, Ruan J et al (2014) Unified polymerization mechanism for the assembly of asc-dependent inflammasomes. Cell 156:1193–1206. https://doi.org/10.1016/j.cell.2014.02.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

MamdouhHashiesh H, Sheikh A, Meeran MFN et al (2023) β-Caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors. ACS Pharmacol Transl Sci 6:1129–1142. https://doi.org/10.1021/A

留言 (0)

沒有登入
gif