Curcumol: a review of its pharmacology, pharmacokinetics, drug delivery systems, structure–activity relationships, and potential applications

Bian Y, Yin G, Wang G, Liu T, Liang L, Yang X, Zhang W, Tang D (2022) Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09681-2

Article  PubMed  Google Scholar 

Cai F, Chen M, Zha D, Zhang P, Zhang X, Cao N, Wang J, He Y, Fan X, Zhang W, Fu Z, Lai Y, Hua ZC, Zhuang H (2017) Curcumol potentiates celecoxib-induced growth inhibition and apoptosis in human non-small cell lung cancer. Oncotarget 8:115526–115545. https://doi.org/10.18632/oncotarget.23308

Cao ZY, Chen JQ, Lv T, Shi ZJ, Feng QY, Fang G (2021) Regulatory mechanism of zedoary turmeric oil on VEGFA, STAT3 and mTOR in ovarian cancer. Chin J Exp Tradit Med Formulae 27:70–80. https://doi.org/10.13422/j.cnki.syfjx.20211491

Chen X, Zong C, Gao Y, Cai R, Fang L, Lu J, Liu F, Qi Y (2014a) Curcumol exhibits anti-inflammatory properties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264.7 cells. Eur J Pharmacol 723:339–345. https://doi.org/10.1016/j.ejphar.2013.11.007

Article  CAS  PubMed  Google Scholar 

Chen G, Wang Y, Li M, Xu T, Wang X, Hong B, Niu Y (2014b) Curcumol induces HSC-T6 cell death through suppression of Bcl-2: involvement of PI3K and NF-κB pathways. Eur J Pharm Sci 65:21–28. https://doi.org/10.1016/j.ejps.2014.09.001

Article  CAS  PubMed  Google Scholar 

Chen Y, Zhu Z, Chen J, Zheng Y, Limsila B, Lu M, Gao T, Yang Q, Fu C, Liao W (2021) Terpenoids from Curcumae Rhizoma: their anticancer effects and clinical uses on combination and versus drug therapies. Biomed Pharmacother 138:111350. https://doi.org/10.1016/j.biopha.2021.111350

Article  CAS  PubMed  Google Scholar 

Chen B, Liu YS, Tian W, Ye TT, Yang R, Wang SJ (2023) Preparation of curcumol flexible liposomes for nebulized inhalation and in vitro and in vivo evaluation. Cent South Pharm 21:1130–1137. https://doi.org/10.7539/j.issn.1672-2981.2023.05.003

Article  Google Scholar 

Chen L, Lu XY, Huang LJ, Jian JY, Jin J, Gu W, Yuan CM, Hao XJ (2020) Structural modification and inhibition of melanin content of curcumol. Nat Prod Res Dev 32:317–322. https://doi.org/10.16333/j.1001-6880.20.2.016

Dai LH, Sun Y, Chen XY (2019) Effects of curcumol on proliferation, migration, invasion and apoptosis of human ovarian cancer SKOV3 cells. J Wenzhou Med Univ 49:740–743. https://doi.org/10.3969/j.issn.2095-9400.2019.10.007

Article  Google Scholar 

Dai S, Wang C, Zhao X, Ma C, Fu K, Liu Y, Peng C, Li Y (2023) Cucurbitacin B: a review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol Res 187:106587. https://doi.org/10.1016/j.phrs.2022.106587

Article  CAS  PubMed  Google Scholar 

Ding J, Wang JJ, Huang C, Wang L, Deng S, Xu TL, Ge WH, Li WG, Li F (2014) Curcumol from Rhizoma Curcumae suppresses epileptic seizure by facilitation of GABA(A) receptors. Neuropharmacology 81:244–255. https://doi.org/10.1016/j.neuropharm.2014.02.009

Article  CAS  PubMed  Google Scholar 

Fang S, Wang L, Luo C, Yi H, Wang X, Ning B (2022) Curcumol inhibits the growth of xenograft-tumors in mice and the biological activities of pancreatic cancer cells by regulating the miR-21-5p/SMAD7 axis. Cell Cycle 21:1249–1266. https://doi.org/10.1080/15384101.2022.2046983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gan Y, Zhou L, Wang R, Zhang Y, Li X, Han S, Rong P, Wang W, Li W (2023) Curcumol reduces aerobic glycolysis and overcomes chemoresistance by inducing Cdh1-mediated Skp2 ubiquitination. Am J Chin Med 53:1–18. https://doi.org/10.1142/S0192415X23500349

Article  Google Scholar 

Gao L, Yang X, Li Y, Wang Z, Wang S, Tan S, Chen A, Cao P, Shao J, Zhang Z, Zhang F, Zheng S (2021a) Curcumol inhibits KLF5-dependent angiogenesis by blocking the ROS/ERK signaling in liver sinusoidal endothelial cells. Life Sci 264:118696. https://doi.org/10.1016/j.lfs.2020.118696

Article  CAS  PubMed  Google Scholar 

Gao L, Yang X, Liang B, Jia Y, Tan S, Chen A, Cao P, Zhang Z, Zheng S, Sun L, Zhang F, Shao J (2021b) Autophagy-induced p62 accumulation is required for curcumol to regulate KLF5-mediated angiogenesis in liver sinusoidal endothelial cells. Toxicology 452:152707. https://doi.org/10.1016/j.tox.2021.152707

Article  CAS  PubMed  Google Scholar 

Gao FT, Jin J, Jian JY, Chen L, Gu W, Yuan CM, Hao XJ, Huang LJ (2023) Synthesis and antifungal activity of curcumol derivatives. Chem Biodivers. https://doi.org/10.1002/cbdv.202300442

Article  PubMed  Google Scholar 

Gu W, Li JC, Ji D, Li L, Zhang J, Pan ZH, Yang JJ, Lu TL, Mao CQ (2018) Pharmacokinetic comparisons of typical constituents in Curcumae Rhizoma and vinegar-processed Curcumae Rhizoma after oral administration to rats. Evid Based Complement Alternat Med 2018:6809497. https://doi.org/10.1155/2018/6809497

Article  PubMed  PubMed Central  Google Scholar 

Guan X, Yu D, HuangFu M, Huang Z, Dou T, Liu Y, Zhou L, Li X, Wang L, Liu H, Wang J, Chen X (2021) Curcumol inhibits EBV-positive Nasopharyngeal carcinoma migration and invasion by targeting nucleolin. Biochem Pharmacol 192:114742. https://doi.org/10.1016/j.bcp.2021.114742

Article  CAS  PubMed  Google Scholar 

Guo P, Wang YW, Weng BX, Li XK, Yang SL, Ye FQ (2014) Synthesis, anti-tumor activity, and structure-activity relationships of curcumol derivatives. J Asian Nat Prod Res 16:53–58. https://doi.org/10.1080/10286020.2013.857660

Article  CAS  PubMed  Google Scholar 

Guo F, Li LL, Zang LQ (2018) Study of mechanism of curcumol on mediating anti breast cancer via down-regulation the expression of Bcl-2 protein. Chin J Clin Pharmacol 34:1175–1178. https://doi.org/10.13699/j.cnki.1001-6821.2018.10.012

Hashem S, Nisar S, Sageena G, Macha MA, Yadav SK, Krishnankutty R, Uddin S, Haris M, Bhat AA (2021) Therapeutic effects of curcumol in several diseases; an overview. Nutr Cancer 73:181–195. https://doi.org/10.1080/01635581.2020.1749676

Article  CAS  PubMed  Google Scholar 

He S, Fu Y, Yan B, Tan H, Li H, Li J, Huang D, Huang Z, Lai J, Feng H, Sun Z, Lan Z (2021) Curcumol alleviates the inflammation of nucleus pulposus cells via the PI3K/Akt/NF-κB signaling pathway and delays intervertebral disk degeneration. World Neurosurg 155:402–411. https://doi.org/10.1016/j.wneu.2021.08.079

Article  Google Scholar 

Hu Y, Xu R, Ma J, Yan Z, Ma J (2022) Curcumol enhances cisplatin sensitivity of gastric cancer: involvement of microRNA-7 and the nuclear factor-kappa B/snail family transcriptional repressor 1 axis. Bioengineered 13:11668–11683. https://doi.org/10.1080/21655979.2022.2070975

Article  CAS  PubMed  Google Scholar 

Huang L, Li A, Liao G, Yang F, Yang J, Chen X, Jiang X (2017) Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA. Oncol Lett 14:1080–1088. https://doi.org/10.3892/ol.2017.6273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Qian J, Li L, Zhang X, Wei G, Lv J, Qin F, Yu J, Xiao Y, Gong Z, Huo J (2020) Curcumol improves cisplatin sensitivity of human gastric cancer cells through inhibiting PI3K/AKT pathway. Drug Dev Res 81:1019–1025. https://doi.org/10.1002/ddr.21719

Article  CAS  PubMed  Google Scholar 

Huang KY, Lv XY, Zhou XQ, Dong Y, Shi MY, Tian N (2021) Study on the down-regulation of FoxD2-AS1 by Curcumol in the treatment of Glioma with temozolomide chemotherapy resistance. J Zhejiang Univ Tradit Chin Med 45:391–397. https://doi.org/10.16466/j.issn1005-5509.2021.04.014

Jia Y, Wang F, Guo Q, Li M, Wang L, Zhang Z, Jiang S, Jin H, Chen A, Tan S, Zhang F, Shao J, Zheng S (2018) Curcumol induces RIPK1/RIPK3 complex- dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol 19:375–387. https://doi.org/10.1016/j.redox.2018.09.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia Y, Gao L, Yang X, Zhang F, Chen A, Wang S, Shao J, Tan S, Zheng S (2020) Blockade of periostin-dependent migration and adhesion by curcumol via inhibition of nuclear factor kappa B signaling in hepatic stellate cells. Toxicology 440:152475. https://doi.org/10.1016/j.tox.2020.152475

Article  CAS  PubMed  Google Scholar 

Jia S, Guo P, Lu J, Huang X, Deng L, Jin Y, Zhao L, Fan X (2021) Curcumol ameliorates lung inflammation and airway remodeling via inhibiting the abnormal activation of the Wnt/β-catenin pathway in chronic asthmatic mice. Drug Des Devel Ther 15:2641–2651. https://doi.org/10.2147/DDDT.S292642

Article  PubMed  PubMed Central  Google Scholar 

Jiang N, Guo J, Liu C, Zhou J (2022) Curcumol inhibits proliferation and promotes apoptosis of human osteosarcoma cell lines. Basic Res Clin Med 42:1200–1205

Google Scholar 

Lai C, Luo B, Shen J, Shao J (2022) Biomedical engineered nanomaterials to alleviate tumor hypoxia for enhanced photodynamic therapy. Pharmacol Res 186:106551. https://doi.org/10.1016/j.phrs.2022.106551

Article  CAS  PubMed  Google Scholar 

Li J, Mao C, Li L, Ji D, Yin F, Lang Y, Lu T, Xiao Y, Li L (2014) Pharmacokinetics and liver distribution study of unbound curdione and curcumol in rats by microdialysis coupled with rapid resolution liquid chromatography (RRLC) and tandem mass spectrometry. J Pharm Biomed Anal 95:146–150. https://doi.org/10.1016/j.jpba.2014.02.025

Article  CAS  PubMed  Google Scholar 

Li W, Hong B, Li Z, Li Q, Bi K (2018a) GC-MS method for determination and pharmacokinetic study of seven volatile constituents in rat plasma after oral administration of the essential oil of Rhizoma Curcumae. J Pharm Biomed Anal 149:577–585. https://doi.org/10.1016/j.jpba.2017.11.058

Article  CAS  PubMed  Google Scholar 

Li X, Liu H, Wang J, Qin J, Bai Z, Chi B, Yan W, Chen X (2018b) Curcumol induces cell cycle arrest and apoptosis by inhibiting IGF-1R/PI3K/Akt signaling pathway in human nasopharyngeal carcinoma CNE-2 cells. Phytother Res 32:2214–2225. https://doi.org/10.1002/ptr.6158

Article  CAS  PubMed  Google Scholar 

Li WJ, Lian YW, Guan QS, Li N, Liang WJ, Liu WX, Huang YB, Cheng Y, Luo H (2018c) Liver-targeted delivery of liposome-encapsulated curcumol using galactosylated- stearate. Exp Ther Med 16:925–930. https://doi.org/10.3892/etm.2018.6210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li YQ, Li GZ, Dong Y, Ma X, Dong HJ, Wu QQ, Zhao WJ (2019b) Orobanone analogues from acid-promoted aromatization rearrangement of curcumol inhibit hypoxia-inducible factor-1 (HIF-1) in cell-based reporter assays. Bioorg Chem 85:357–363. https://doi.org/10.1016/j.bioorg.2019.01.013

Article 

留言 (0)

沒有登入
gif