Roles of KCNA2 in Neurological Diseases: from Physiology to Pathology

Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591–2599. https://doi.org/10.1113/jphysiol.2011.224212

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catacuzzeno L, Sforna L, Franciolini F (2020) Voltage-dependent gating in K channels: experimental results and quantitative models. Pflugers Arch 472:27–47. https://doi.org/10.1007/s00424-019-02336-6

Article  CAS  PubMed  Google Scholar 

Lee J, Kang M, Kim S, Chang I (2020) Structural and molecular insight into the pH-induced low-permeability of the voltage-gated potassium channel Kv1.2 through dewetting of the water cavity. PLoS Comput Biol 16:e1007405. https://doi.org/10.1371/journal.pcbi.1007405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Wang Q, Ni F, Ma J (2010) Structure of the full-length shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc Natl Acad Sci U S A 107:11352–11357. https://doi.org/10.1073/pnas.1000142107

Article  PubMed  PubMed Central  Google Scholar 

Chen P, Dendorfer A, Finol-Urdaneta RK et al (2010) Biochemical characterization of kappaM-RIIIJ, a Kv1.2 channel blocker: evaluation of cardioprotective effects of kappaM-conotoxins. J Biol Chem 285:14882–14889. https://doi.org/10.1074/jbc.M109.068486

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masnada S, Hedrich UBS, Gardella E et al (2017) Clinical spectrum and genotype-phenotype associations of KCNA2-related encephalopathies. Brain 140:2337–2354. https://doi.org/10.1093/brain/awx184

Article  PubMed  Google Scholar 

Döring JH, Schröter J, Jüngling J, et al (2021) Refining genotypes and phenotypes in KCNA2-related neurological disorders. Int J Mol Sci 22. https://doi.org/10.3390/ijms22062824

Pinatel D, Faivre-Sarrailh C (2020) Assembly and function of the juxtaparanodal Kv1 complex in health and disease. Life (Basel, Switzerland) 11:. https://doi.org/10.3390/life11010008

Giglio AM, Storm JF (2014) Postnatal development of temporal integration, spike timing and spike threshold regulation by a dendrotoxin-sensitive K+ current in rat CA1 hippocampal cells. Eur J Neurosci 39:12–23. https://doi.org/10.1111/ejn.12385

Article  PubMed  Google Scholar 

Meneses D, Vega AV, Torres-Cruz FM, Barral J (2016) KV1 and KV3 potassium channels identified at presynaptic terminals of the corticostriatal synapses in rat. Neural Plast 2016:8782518. https://doi.org/10.1155/2016/8782518

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung YH, Joo KM, Nam RH et al (2005) Immunohistochemical study on the distribution of the voltage-gated potassium channels in the gerbil cerebellum. Neurosci Lett 374:58–62. https://doi.org/10.1016/j.neulet.2004.10.029

Article  CAS  PubMed  Google Scholar 

Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci Off J Soc Neurosci 14:4588–4599. https://doi.org/10.1523/JNEUROSCI.14-08-04588.1994

Article  CAS  Google Scholar 

Sheng M, Tsaur ML, Jan YN, Jan LY (1994) Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci Off J Soc Neurosci 14:2408–2417. https://doi.org/10.1523/JNEUROSCI.14-04-02408.1994

Article  CAS  Google Scholar 

Feng H, Su J, Fang W, et al (2021) The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin. Elife 10. https://doi.org/10.7554/eLife.69333

Liu C-H, Chang H-M, Wu T-H et al (2017) Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS. Histochem Cell Biol 148:407–416. https://doi.org/10.1007/s00418-017-1570-8

Article  CAS  PubMed  Google Scholar 

Shen W, Hernandez-Lopez S, Tkatch T et al (2004) Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. J Neurophysiol 91:1337–1349. https://doi.org/10.1152/jn.00414.2003

Article  CAS  PubMed  Google Scholar 

Gu C, Jan YN, Jan LY (2003) A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels. Science 301:646–649. https://doi.org/10.1126/science.1086998

Article  CAS  PubMed  Google Scholar 

Ordemann GJ, Apgar CJ, Brager DH (2019) D-type potassium channels normalize action potential firing between dorsal and ventral CA1 neurons of the mouse hippocampus. J Neurophysiol 121:983–995. https://doi.org/10.1152/jn.00737.2018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hyun JH, Eom K, Lee K-H et al (2015) Kv1.2 mediates heterosynaptic modulation of direct cortical synaptic inputs in CA3 pyramidal cells. J Physiol 593:3617–3643. https://doi.org/10.1113/JP270372

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higgs MH, Spain WJ (2011) Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones. J Physiol 589:5125–5142. https://doi.org/10.1113/jphysiol.2011.216721

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588:3187–3200. https://doi.org/10.1113/jphysiol.2010.191973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kole MHP, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55:633–647. https://doi.org/10.1016/j.neuron.2007.07.031

Article  CAS  PubMed  Google Scholar 

Dodson PD, Billups B, Rusznák Z et al (2003) Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol 550:27–33. https://doi.org/10.1113/jphysiol.2003.046250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Jan YN, Jan LY (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225–1230. https://doi.org/10.1126/science.1519059

Article  CAS  PubMed  Google Scholar 

Bixby KA, Nanao MH, Shen NV et al (1999) Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol 6:38–43. https://doi.org/10.1038/4911

Article  CAS  PubMed  Google Scholar 

Trimmer JS, Rhodes KJ (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66:477–519. https://doi.org/10.1146/annurev.physiol.66.032102.113328

Article  CAS  PubMed  Google Scholar 

Foust AJ, Yu Y, Popovic M et al (2011) Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J Neurosci Off J Soc Neurosci 31:15490–15498. https://doi.org/10.1523/JNEUROSCI.2752-11.2011

Article  CAS  Google Scholar 

Rhodes KJ, Strassle BW, Monaghan MM et al (1997) Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J Neurosci Off J Soc Neurosci 17:8246–8258. https://doi.org/10.1523/JNEUROSCI.17-21-08246.1997

Article  CAS  Google Scholar 

Wu Y, Yan Y, Yang Y, et al (2023) Cryo-EM structures of Kv1.2 potassium channels, conducting and non-conducting. bioRxiv Prepr Serv Biol. https://www.biorxiv.org/content/10.1101/2023.06.02.543446v1

Lorincz A, Nusser Z (2008) Cell-type-dependent molecular composition of the axon initial segment. J Neurosci Off J Soc Neurosci 28:14329–14340. https://doi.org/10.1523/JNEUROSCI.4833-08.2008

Article  CAS  Google Scholar 

Poliak S, Salomon D, Elhanany H et al (2003) Juxtaparanodal clustering of shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 162:1149–1160. https://doi.org/10.1083/jcb.200305018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hyun JH, Eom K, Lee K-H et al (2013) Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons. J Physiol 591:5525–5540. https://doi.org/10.1113/jphysiol.2013.259002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:379–381. https://doi.org/10.1038/336379a0

Article  CAS  PubMed  Google Scholar 

Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci Off J Soc Neurosci 21:9955–9963. https://doi.org/10.1523/JNEUROSCI.21-24-09955.2001

Article  CAS  Google Scholar 

Berridge MJ (1995) Calcium signalling and cell proliferation. BioEssays 17:491–500. https://doi.org/10.1002/bies.950170605

Article  CAS  PubMed  Google Scholar 

Funabashi K, Ohya S, Yamamura H et al (2010) Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes. Am J Physiol Cell Physiol 298:C786–C797. https://doi.org/10.1152/ajpcell.00469.2009

Article 

留言 (0)

沒有登入
gif