Parkinson’s Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells

Jellinger KA (2015) Neuropathobiology of non-motor symptoms in Parkinson disease. J. Neural Transm 122:1429–40

Article  CAS  PubMed  Google Scholar 

Singh S, Dikshit M (2007) Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Rev 54(2):233–50

Article  CAS  PubMed  Google Scholar 

Erekat NS (2018) Apoptosis and its role in Parkinson’s disease. Exon Publications:65-82

Vidyadhara D, Yarreiphang H, Raju TR, Alladi PA (2021) Differences in neuronal numbers, morphology, and developmental apoptosis in mice nigra provide experimental evidence of ontogenic origin of vulnerability to Parkinson’s disease. Neurotox Res 39:1892–907

Article  CAS  PubMed  Google Scholar 

Rahimian N, Nahand JS, Hamblin MR, Mirzaei H (2022) Exosomal microRNA profiling. MicroRNA profiling: methods and protocols:13-47

Mirzaei H, Rahimian N, Mirzaei HR, Nahand JS, Hamblin MR (2022) Exosomes and microRNAs in biomedical science. Morgan & Claypool Publishers

Hussen BM, Ahmadi G, Marzban H, Azar MEF, Sorayyayi S, Karampour R et al (2021) The role of HPV gene expression and selected cellular MiRNAs in lung cancer development. Microb Pathog 150:104692

Article  CAS  PubMed  Google Scholar 

Hutchison ER, Okun E, Mattson MP (2009) The therapeutic potential of microRNAs in nervous system damage, degeneration, and repair. Neuromolecular Med 11(3):153–61

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussein M, Magdy R (2021) MicroRNAs in central nervous system disorders: current advances in pathogenesis and treatment. Egypt J Neurol. Psychiatry Neurosurg 57(1):36

Article  Google Scholar 

Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A et al (2019) MicroRNAs: key players in virus-associated hepatocellular carcinoma. J Cell Physiol 234(8):12188–225

Article  CAS  PubMed  Google Scholar 

Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR, Asemi Z et al (2020) Exosomal miRNAs: novel players in viral infection. Epigenomics. 12(4):353–70

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A et al (2021) The role of Th17 cells in viral infections. Int Immunopharmacol 91:107331

Article  CAS  PubMed  Google Scholar 

Yousefpouran S, Mostafaei S, Manesh PV, Iranifar E, Bokharaei-Salim F, Nahand JS et al (2020) The assessment of selected miRNAs profile in HIV, HBV, HCV, HIV/HCV, HIV/HBV co-infection and elite controllers for determination of biomarker. Microb Pathog 147:104355

Article  CAS  PubMed  Google Scholar 

Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6(11):8474–90

Article  PubMed  PubMed Central  Google Scholar 

Sadri Nahand J, Shojaie L, Akhlagh SA, Ebrahimi MS, Mirzaei HR, Bannazadeh Baghi H et al (2021) Cell death pathways and viruses: role of microRNAs. Mol Ther Nucleic Acids 24:487–511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latini A, Ciccacci C, Novelli G, Borgiani P (2017) Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility. Immunol Res 65:811–27

Article  CAS  PubMed  Google Scholar 

Meza-Sosa KF, Valle-García D, Pedraza-Alva G, Pérez-Martínez L (2012) Role of microRNAs in central nervous system development and pathology. J Neurosci Res 90(1):1–12

Article  CAS  PubMed  Google Scholar 

Petri R, Malmevik J, Fasching L, Åkerblom M, Jakobsson J (2014) miRNAs in brain development. Exp Cell Res 321(1):84–9

Article  CAS  PubMed  Google Scholar 

Ma Z-X, Liu Z, Xiong H-H, Zhou Z-P, Ouyang L-S, Xie F-K et al (2023) MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 18(4):734

Article  CAS  PubMed  Google Scholar 

Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J et al (2021) Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Comm Signaling 19(1):1–29

Article  Google Scholar 

Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell research. 29(5):347–64

Article  CAS  PubMed  PubMed Central  Google Scholar 

Habibi M (2017) Dopamine receptors☆. Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier

Luo Y (2012) Chapter 1 - The function and mechanisms of Nurr1 action in midbrain dopaminergic neurons, from development and maintenance to survival. In: International Review of Neurobiology. 102: Academic Press. 1–22

Ye Q, Yuan XL, He J, Zhou J, Yuan CX, Yang XM (2016) Anti-apoptotic effect of Shudipingchan granule in the substantia nigra of rat models of Parkinson’s disease. Neural Regen Res. 11(10):1625–32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sadowski K, Kotulska-Jóźwiak K, Jóźwiak S (2015) Role of mTOR inhibitors in epilepsy treatment. Pharmacol Rep 67(3):636–46

Article  CAS  PubMed  Google Scholar 

Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci 112(38):E5308–E17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–701

Article  CAS  PubMed  Google Scholar 

Chung J-Y, Lee S-J, Lee S-H, Jung YS, Ha N-C, Seol W et al (2011) Direct interaction of α-synuclein and AKT regulates IGF-1 signaling: implication of Parkinson disease. Neurosignals 19(2):86–96

Article  CAS  PubMed  Google Scholar 

Khwanraj K, Madlah S, Grataitong K, Dharmasaroja P (2016) Comparative mRNA expression of eEF1A isoforms and a PI3K/Akt/mTOR pathway in a cellular model of Parkinson’s disease. Parkinson’s Dis. 2016

Morales-García JA, Susín C, Alonso-Gil S, Pérez DI, Palomo V, Pérez C et al (2013) Glycogen synthase kinase-3 inhibitors as potent therapeutic agents for the treatment of Parkinson disease. ACS Chem Neurosci 4(2):350–60

Article  PubMed  Google Scholar 

Armentero M, Sinforiani E, Ghezzi C, Bazzini E, Levandis G, Ambrosi G et al (2011) Peripheral expression of key regulatory kinases in Alzheimer’s disease and Parkinson’s disease. Neurobiol Aging 32(12):2142–51

Article  CAS  PubMed  Google Scholar 

Ding M-L, Ma H, Man Y-G, Lv H-Y (2017) Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 95(12):1396-1405

Zhai H, Kang Z, Zhang H, Ma J, Chen G (2019) Baicalin attenuated substantia nigra neuronal apoptosis in Parkinson’s disease rats via the mTOR/AKT/GSK-3β pathway. J Integr Neurosci 18(4):423–9

Article  PubMed  Google Scholar 

Sharma VK, Singh TG, Singh S, Garg N, Dhiman S (2021) Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochem Res 46(12):3103–22

Article  CAS  PubMed  Google Scholar 

O’Brien MA, Kirby R (2008) Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care 18(6):572–85

Article  Google Scholar 

Verbrugge I, Johnstone RW, Smyth MJ (2010) SnapShot: extrinsic apoptosis pathways. Cell 143(7):1192.e2

Nahand JS, Shojaie L, Akhlagh SA, Ebrahimi MS, Mirzaei HR, Baghi HB et al (2021) Cell death pathways and viruses: role of microRNAs. Molecular Mol Ther Nucleic Acids 24:487–511

Flusberg DA, Sorger PK (2015) Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 25(8):446–58

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–96

Article  CAS  PubMed  Google Scholar 

Pileczki V, Cojocneanu-Petric R, Maralani M, Neagoe IB, Sandulescu R (2016) MicroRNAs as regulators of apoptosis mechanisms in cancer. Clujul Med (1957) 89(1):50-5

Google Scholar 

Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150(1):119–31

CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Wang Y, Yi Y, Liu F (2021) Reactive oxygen species/caspase 3 promotes autophagy of nigral dopaminergic neuron in Parkinson’s disease. J Biomater Tissue Eng 11(2):320–5

Dionísio P, Amaral J, Rodrigues C (2021) Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev 67:101263

Article  PubMed  Google Scholar 

Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MB, Naoi M (2002) An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 326(2):105–8

Article  CAS  PubMed  Google Scholar 

Iaccarino C, Crosio C, Vitale C, Sanna G, Carrì MT, Barone P (2007) Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 16(11):1319–26

Article  CAS  PubMed 

留言 (0)

沒有登入
gif