NUS1 Variants Cause Lennox-Gastaut Syndrome Related to Unfolded Protein Reaction Activation

Bar-El ML, Vankova P, Yeheskel A et al (2020) Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex. Nat Commun Oct 19(1):5273. https://doi.org/10.1038/s41467-020-18970-z

Article  CAS  Google Scholar 

Miao RQ, Gao Y, Harrison KD et al (2006) Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc Natl Acad Sci United States Am Jul 18(29):10997–11002. https://doi.org/10.1073/pnas.0602427103

Article  CAS  Google Scholar 

Yu SH, Wang T, Wiggins K et al (2021) Lysosomal cholesterol accumulation contributes to the movement phenotypes associated with NUS1 haploinsufficiency. Genet Med Jul 23(7):1305–1314. https://doi.org/10.1038/s41436-021-01137-6

Article  CAS  Google Scholar 

Edani BH, Grabinska KA, Zhang R et al (2020) Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc Natl Acad Sci United States Am Aug 25(34):20794–20802. https://doi.org/10.1073/pnas.2008381117

Article  CAS  Google Scholar 

Grabinska KA, Park EJ, Sessa WC (2016) cis-prenyltransferase: New insights into protein glycosylation, Rubber Synthesis, and Human diseases. J Biol Chem Aug 26(35):18582–18590. https://doi.org/10.1074/jbc.R116.739490

Article  CAS  Google Scholar 

Zhang R, Tang BS, Guo JF (2020) Research advances on neurite outgrowth inhibitor B receptor. J Cell Mol Med Jul 24(14):7697–7705. https://doi.org/10.1111/jcmm.15391

Article  CAS  Google Scholar 

Long SL, Li YK, Xie YJ, Long ZF, Shi JF, Mo ZC (2017) Neurite outgrowth inhibitor B receptor: a versatile receptor with multiple functions and actions. DNA Cell Biol Dec 36(12):1142–1150. https://doi.org/10.1089/dna.2017.3813

Article  CAS  Google Scholar 

Chen Y, Hu W, Li Q et al (2021) NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem 296:100624. https://doi.org/10.1016/j.jbc.2021.100624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hetz C, Zhang K, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21(8):421–438. https://doi.org/10.1038/s41580-020-0250-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park EJ, Grabinska KA, Guan Z et al (2014) Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab Sep 2 20(3):448–457. https://doi.org/10.1016/j.cmet.2014.06.016

Article  CAS  Google Scholar 

Guo J-F, Zhang L, Li K et al (2018) Coding mutations in contribute to Parkinson’s disease. Proc Natl Acad Sci USA 115(45):11567–11572. https://doi.org/10.1073/pnas.1809969115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stranneheim H, Lagerstedt-Robinson K, Magnusson M et al (2021) Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med 13(1):40. https://doi.org/10.1186/s13073-021-00855-5

Article  PubMed  PubMed Central  Google Scholar 

Chen X, Xiao Y, Zhou M et al (2020) Genetic analysis of NUS1 in Chinese patients with Parkinson’s disease. Neurobiol Aging 86:202e5. 202.e6

Article  Google Scholar 

Zhang P, Cui D, Liao P et al (2021) Case Report: clinical features of a Chinese boy with epileptic seizures and intellectual disabilities who carries a truncated variant. Front Pediatr 9:725231. https://doi.org/10.3389/fped.2021.725231

Article  PubMed  PubMed Central  Google Scholar 

Courage C, Oliver KL, Park EJ et al (2021) Progressive myoclonus epilepsies-residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. Am J Hum Genet 108(4):722–738. https://doi.org/10.1016/j.ajhg.2021.03.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu J, Peng L, Wang W et al (2019) Sodium Valproate reduces neuronal apoptosis in Acute Pentylenetetrzole-Induced seizures via inhibiting ER stress. Neurochem Res Nov 44(11):2517–2526. https://doi.org/10.1007/s11064-019-02870-w

Article  CAS  Google Scholar 

Petrov T, Rafols JA, Alousi SS et al (2003) Cellular compartmentalization of phosphorylated eIF2alpha and neuronal NOS in human temporal lobe epilepsy with hippocampal sclerosis. J Neurol Sci May 15(1–2):31–39. https://doi.org/10.1016/s0022-510x(02)00461-6

Article  Google Scholar 

Fu J, Tao T, Li Z, Chen Y, Li J, Peng L (2020) The roles of ER stress in epilepsy: molecular mechanisms and therapeutic implications. Biomed Pharmacother Nov 131:110658. https://doi.org/10.1016/j.biopha.2020.110658

Article  CAS  Google Scholar 

Madhamanchi K, Madhamanchi P, Jayalakshmi S, Panigrahi M, Patil A, Phanithi PB (2022) Endoplasmic reticulum stress and unfolded protein accumulation correlate to seizure recurrence in focal cortical dysplasia patients. Cell Stress Chaperones 27(6):633–643. https://doi.org/10.1007/s12192-022-01301-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terabayashi T, Hashimoto S (2021) Increased unfolded protein responses caused by MED17 mutations. Neurogenetics 22(4):353–357. https://doi.org/10.1007/s10048-021-00661-6

Article  CAS  PubMed  Google Scholar 

Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy (1989) Epilepsia Jul-Aug 30(4):389–399. https://doi.org/10.1111/j.1528-1157.1989.tb05316.x

Article  Google Scholar 

Proposal for revised clinical and electroencephalographic classification of epileptic seizures (1981) From the commission on classification and terminology of the International League against Epilepsy. Epilepsia Aug 22(4):489–501. https://doi.org/10.1111/j.1528-1157.1981.tb06159.x

Article  Google Scholar 

Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on classification and terminology, 2005–2009. Epilepsia Apr 51(4):676–685. https://doi.org/10.1111/j.1528-1167.2010.02522.x

Article  Google Scholar 

Shi YW, Zhang Q, Cai K et al (2019) Synaptic clustering differences due to different GABRB3 mutations cause variable epilepsy syndromes. Brain Oct 1(10):3028–3044. https://doi.org/10.1093/brain/awz250

Article  Google Scholar 

Wang J, Qiao JD, Liu XR et al (2021) UNC13B variants associated with partial epilepsy with favourable outcome. Brain Nov 29(10):3050–3060. https://doi.org/10.1093/brain/awab164

Article  Google Scholar 

Parker L, Howlett IC, Rusan ZM, Tanouye MA (2011) Seizure and epilepsy: studies of seizure disorders in Drosophila. Int Rev Neurobiol 99doi. https://doi.org/10.1016/B978-0-12-387003-2.00001-X

Perkins KL (2006) Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J Neurosci Methods Jun 30(1–2):1–18. https://doi.org/10.1016/j.jneumeth.2006.02.010

Article  CAS  Google Scholar 

Olsen SR, Bhandawat V, Wilson RI (2007) Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron. ;54(1)

Arzimanoglou A, French J, Blume WT et al (2009) Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol Jan 8(1):82–93. https://doi.org/10.1016/S1474-4422(08)70292-8

Article  Google Scholar 

Asadi-Pooya AA (2018) Lennox-Gastaut syndrome: a comprehensive review. Neurol Sci Mar 39(3):403–414. https://doi.org/10.1007/s10072-017-3188-y

Article  Google Scholar 

Carvill GL, Heavin SB, Yendle SC et al (2013) Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet Jul 45(7):825–830. https://doi.org/10.1038/ng.2646

Article  CAS  Google Scholar 

Euro E-, Phenome/Genome P, Epi KC, Euro E-RESC (2017) De Novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet Jan 5(1):179. https://doi.org/10.1016/j.ajhg.2016.12.012

Article  CAS  Google Scholar 

Guo JF, Zhang L, Li K et al (2018) Coding mutations in NUS1 contribute to Parkinson’s disease. Proc Natl Acad Sci United States Am Nov 6(45):11567–11572. https://doi.org/10.1073/pnas.1809969115

Article  CAS  Google Scholar 

Chen J, Zheng G, Guo H, Shi ZN (2014) Role of endoplasmic reticulum stress via the PERK signaling pathway in brain injury from status epilepticus. J Mol Neurosci Aug 53(4):677–683. https://doi.org/10.1007/s12031-014-0236-4

Article  CAS  Google Scholar 

Kim JS, Heo RW, Kim H et al (2014) Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death. J Neural Transm (Vienna) Oct 121(10):1233–1243. https://doi.org/10.1007/s00702-014-1208-0

Article  CAS  Google Scholar 

Liu G, Guo H, Guo C, Zhao S, Gong D, Zhao Y (2011) Involvement of IRE1alpha signaling in the hippocampus in patients with mesial temporal lobe epilepsy. Brain Res Bull Jan 15(1):94–102. https://doi.org/10.1016/j.brainresbull.2010.10.004

Article  CAS  Google Scholar 

Hashimoto S, Saido TC (2018) Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biol 8(4). https://doi.org/10.1098/rsob.180024

Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

Article  CAS  PubMed  Google Scholar 

Malhi H, Kaufman RJ (2011) Endoplasmic reticulum stress in liver disease. J Hepatol Apr 54(4):795–809. https://doi.org/10.1016/j.jhep.2010.11.005

Article  CAS  Google Scholar 

Iurlaro R, Muñoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283(14):2640–2652. https://doi.org/10.1111/febs.13598

留言 (0)

沒有登入
gif