The role of sustainable materials in sample preparation

Azzouz A, Kailasa SK, LeeRascón SSJA, Ballesteros E, Zhang M, Kim K-H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC, Trends Anal Chem. 2018;108:347–69. https://doi.org/10.1016/j.trac.2018.08.009.

Article  CAS  Google Scholar 

Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M. The roles of ionic liquids in sorptive microextraction techniques. TrAC, Trends Anal Chem. 2010;29:602–16. https://doi.org/10.1016/j.trac.2009.11.009.

Article  CAS  Google Scholar 

Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of liquid-liquid extraction; the barriers and the enablers. Microchem J. 2022;182: 107863. https://doi.org/10.1016/j.microc.2022.107863.

Article  CAS  Google Scholar 

Carasek E, Bernardi G, Morelli D, Merib J. Sustainable green solvents for microextraction techniques: recent developments and applications. J Chromatogr A. 2021;1640: 461944. https://doi.org/10.1016/j.chroma.2021.461944.

Article  CAS  PubMed  Google Scholar 

Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Electronic supplementary information (ESI) available: spectroscopic data. 2003. See http://www.rsc.org/suppdata/cc/b2/b210714g/. Chem Commun. 2003; 1; 70–71. https://doi.org/10.1039/b210714g

Prabhune A, Dey R. Green and sustainable solvents of the future: deep eutectic solvents. J Mol Liq. 2023;379: 121676. https://doi.org/10.1016/j.molliq.2023.121676.

Article  CAS  Google Scholar 

Choi YH, Van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp G-J, Verpoorte R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011;156:1701–5. https://doi.org/10.1104/pp.111.178426.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in analytical sample pretreatment (update 2017–2022). Part A: Liquid phase microextraction. Microchemical Journal. 2023;189:108509. https://doi.org/10.1016/j.microc.2023.108509

Werner J, Zgoła-Grześkowiak A, Płatkiewicz J, Płotka-Wasylka J, Jatkowska N, Kalyniukova A, Zaruba S, Andruch V. Deep eutectic solvents in analytical sample preconcentration Part B: solid-phase (micro)extraction. Microchem J. 2023;191: 108898. https://doi.org/10.1016/j.microc.2023.108898.

Article  CAS  Google Scholar 

Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods. J Chromatogr A. 2009;1216:530–9. https://doi.org/10.1016/j.chroma.2008.06.029.

Article  CAS  PubMed  Google Scholar 

Rubio S. Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead. Anal Bioanal Chem. 2020;412:6037–58. https://doi.org/10.1007/s00216-020-02559-y.

Article  CAS  PubMed  Google Scholar 

Caballero-Casero N, Rubio S. Identification of bisphenols and derivatives in greenhouse dust as a potential source for human occupational exposure. Anal Bioanal Chem. 2022;414:5397–409. https://doi.org/10.1007/s00216-021-03863-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romera-García E, Ballesteros-Gómez A, Rubio S. Supramolecular biosolvents made up of self-assembled rhamnolipids: synthesis and characterization. Green Chem. 2020;22:6115–26. https://doi.org/10.1039/D0GC02078H.

Article  Google Scholar 

Jesús Dueñas-Mas M, Ballesteros-Gómez A, Rubio S. Characterization of a new sustainable supramolecular solvent and application to the determination of oxy-PAHs in meat, seafood and fish tissues. Food Chem. 2023;405: 134731. https://doi.org/10.1016/j.foodchem.2022.134731.

Article  CAS  PubMed  Google Scholar 

Cai Z-H, Wang J-D, Liu L, Ruan L-D, Gu Q, Yan X-Y, Fu L-N, Zhao P-Q, Zhang S, Fu Y-J. A green and designable natural deep eutectic solvent-based supramolecular solvents system: efficient extraction and enrichment for phytochemicals. Chem Eng J. 2023;457: 141333. https://doi.org/10.1016/j.cej.2023.141333.

Article  CAS  Google Scholar 

Jalili V, Zendehdel R, Barkhordari A. Supramolecular solvent-based microextraction techniques for sampling and preconcentration of heavy metals: a review. Rev Anal Chem. 2021;40:93–107. https://doi.org/10.1515/revac-2021-0130.

Article  CAS  Google Scholar 

Jessop PG, Phan L, Carrier A, Robinson S, Dürr CJ, Harjani JR. A solvent having switchable hydrophilicity. Green Chem. 2010;12:809. https://doi.org/10.1039/b926885e.

Article  CAS  Google Scholar 

Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL. Reversible nonpolar-to-polar solvent. Nature. 2005;436:1102–1102. https://doi.org/10.1038/4361102a.

Article  CAS  PubMed  Google Scholar 

Lasarte-Aragonés G, Lucena R, Cárdenas S, Valcárcel M. Use of switchable solvents in the microextraction context. Talanta. 2015;131:645–9. https://doi.org/10.1016/j.talanta.2014.08.031.

Article  CAS  PubMed  Google Scholar 

Bazel Y, Rečlo M, Chubirka Y. Switchable hydrophilicity solvents in analytical chemistry. Five years of achievements Microchemical Journal. 2020;157: 105115. https://doi.org/10.1016/j.microc.2020.105115.

Article  CAS  Google Scholar 

Shishov A, Sviridov I, Timofeeva I, Chibisova N, Moskvin L, Bulatov A. An effervescence tablet-assisted switchable solvent-based microextraction: on-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination. J Mol Liq. 2017;247:246–53. https://doi.org/10.1016/j.molliq.2017.09.120.

Article  CAS  Google Scholar 

Pawliszyn J. Evolution of solid phase microextraction technology. Cambridge: Royal Society of Chemistry; 2023.

Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, De La Guardia M. Miniaturized solid phase extraction techniques for different kind of pollutants analysis: state of the art and future perspectives – PART 1. TrAC, Trends Anal Chem. 2023;162: 117034. https://doi.org/10.1016/j.trac.2023.117034.

Article  CAS  Google Scholar 

Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, De La Guardia M. Miniaturized solid phase extraction techniques for different kind of pollutants analysis: state of the art and future perspectives – part 2. TrAC, Trends Anal Chem. 2023;165: 117140. https://doi.org/10.1016/j.trac.2023.117140.

Article  CAS  Google Scholar 

Zhou W, Wieczorek MN, Javanmardi H, Pawliszyn J. Direct solid-phase microextraction-mass spectrometry facilitates rapid analysis and green analytical chemistry. TrAC, Trends Anal Chem. 2023;166: 117167. https://doi.org/10.1016/j.trac.2023.117167.

Article  CAS  Google Scholar 

Mafra G, García-Valverde M, Millán-Santiago J, Carasek E, Lucena R, Cárdenas S. Returning to nature for the design of sorptive phases in solid-phase microextraction. Separations. 2019;7:2. https://doi.org/10.3390/separations7010002.

Article  CAS  Google Scholar 

Godage NH, Gionfriddo E. Use of natural sorbents as alternative and green extractive materials: a critical review. Anal Chim Acta. 2020;1125:187–200. https://doi.org/10.1016/j.aca.2020.05.045.

Article  CAS  PubMed  Google Scholar 

Ma X, Wang L, He Q, Sun Q, Yin D, Zhang Y. A review on recent developments and applications of green sorbents-based solid phase extraction techniques. Advances in Sample Preparation. 2023;6: 100065. https://doi.org/10.1016/j.sampre.2023.100065.

Article  Google Scholar 

Díaz-Liñán MC, Lucena R, Cárdenas S, López-Lorente AI. Unmodified cellulose filter paper, a sustainable and affordable sorbent for the isolation of biogenic amines from beer samples. J Chromatogr A. 2021;1651: 462297. https://doi.org/10.1016/j.chroma.2021.462297.

Article  CAS  PubMed  Google Scholar 

Allgaier-Díaz DW, Trujillo-Rodríguez MJ, Ayala JH, Díaz Díaz D, Pino V. Unmodified biopolymers as sustainable microextraction materials for the environmental monitoring of polycyclic aromatic hydrocarbons and personal care products. Microchem J. 2023;191: 108873. https://doi.org/10.1016/j.microc.2023.108873.

Article  CAS  Google Scholar 

González-Bermúdez M, López-Lorente ÁI, Lucena R, Cárdenas S. Paper-based sorptive phases for a sustainable sample preparation. Advances in Sample Preparation. 2023;5: 100051. https://doi.org/10.1016/j.sampre.2023.100051.

Article  Google Scholar 

Benedé JL, Chisvert A, Lucena R, Cárdenas S. Synergistic combination of polyamide-coated paper-based sorptive phase for the extraction of antibiotics in saliva. Anal Chim Acta. 2021;1164: 338512. https://doi.org/10.1016/j.aca.2021.338512.

Article  CAS  PubMed  Google Scholar 

Benedé JL, Chisvert A, Lucena R, Cárdenas S. A paper-based polystyrene/nylon Janus platform for the microextraction of UV filters in water samples as proof-of-concept. Microchim Acta. 2021;188:391. https://doi.org/10.1007/s00604-021-05047-x.

Article  CAS  Google Scholar 

Díaz-Liñán MC, García-Valverde MT, Lucena R, Cárdenas S, López-Lorente AI. Paper-based sorptive phases for microextraction and sensing. Anal Methods. 2020;12:3074–91. https://doi.org/10.1039/D0AY00702A.

Article  PubMed  Google Scholar 

Hu B, Yao Z-P. Electrospray ionization mass spectrometry with wooden tips: a review. Anal Chim Acta. 2022;1209: 339136. https://doi.org/10.1016/j.aca.2021.339136.

Article  CAS  PubMed  Google Scholar 

Vejar-Vivar C, Millán-Santiago J, Mardones C, Lucena R, Cárdenas S. Polydopamine inner wall-coated hypodermic needle as microextraction device and electrospray emitter for the direct analysis of illicit drugs in oral fluid by ambient mass spectrometry. Talanta. 2022;249: 123693. https://doi.org/10.1016/j.talanta.2022.123693.

Article  CAS  PubMed  Google Scholar 

Millán-Santiago J, Lucena R, Cárdenas S. Nylon 6-cellulose composite hosted in a hypodermic needle: biofluid extraction and analysis by ambient mass spectrometry in a single device. Journal of Pharmaceutical Analysis. 2023;S2095177923001272. https://doi.org/10.1016/j.jpha.2023.06.015

Srivastava A, Mishra A. Food waste valorization for handling environmental problems: a review. Environmental Sustainability. 2022;5:401–21. https://doi.org/10.1007/s42398-022-00245-6.

留言 (0)

沒有登入
gif