Myeloid cell replacement is neuroprotective in chronic experimental autoimmune encephalomyelitis

Wallin, M. T. et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 269–285 (2019).

Article  Google Scholar 

Miller, A. E. et al. Autologous hematopoietic stem cell transplant in multiple sclerosis: recommendations of the national multiple sclerosis society. JAMA Neurol. 78, 241–246 (2021).

Article  PubMed  Google Scholar 

Noseworthy, J. H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B. G. Multiple sclerosis. N. Engl. J. Med. 343, 938–952 (2000).

Article  CAS  PubMed  Google Scholar 

Yong, H. Y. F. & Yong, V. W. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat. Rev. Neurol. 18, 40–55 (2022).

Article  CAS  PubMed  Google Scholar 

Mancardi, G. L. et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 84, 981–988 (2015).

Article  CAS  PubMed  Google Scholar 

Nash, R. A. et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol. 72, 159–169 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Atkins, H. L. et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet 388, 576–585 (2016).

Article  PubMed  Google Scholar 

Moore, J. J. et al. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 90, 514–521 (2019).

Article  PubMed  Google Scholar 

Burt, R. K. et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing–remitting multiple sclerosis: a randomized clinical trial. JAMA 321, 165–174 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Muraro, P. A. et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 201, 805–816 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muraro, P. A. et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J. Clin. Invest. 124, 1168–1172 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Massey, J. et al. Haematopoietic stem cell transplantation results in extensive remodelling of the clonal T cell repertoire in multiple sclerosis. Front. Immunol. 13, 798300 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruder, J. et al. Dynamics of T cell repertoire renewal following autologous hematopoietic stem cell transplantation in multiple sclerosis. Sci. Transl. Med. 14, eabq1693 (2022).

Article  CAS  PubMed  Google Scholar 

Gold, R. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129, 1953–1971 (2006).

Article  PubMed  Google Scholar 

Psenicka, M. W., Smith, B. C., Tinkey, R. A. & Williams, J. L. Connecting neuroinflammation and neurodegeneration in multiple sclerosis: Are oligodendrocyte precursor cells a nexus of disease? Front. Cell. Neurosci. 15, 654284 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams, J. L. et al. Astrocyte–T cell crosstalk regulates region‐specific neuroinflammation. Glia 68, 1361–1374 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Meijer, M. et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron 110, 1193–1210.e13 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ajami, B. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21, 541–551 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerrero, B. L. & Sicotte, N. L. Microglia in multiple sclerosis: Friend or foe? Front. Immunol. 11, 374 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lampron, A. et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 212, 481–495 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcão, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

Article  PubMed  Google Scholar 

Sailor, K. A. et al. Hematopoietic stem cell transplantation chemotherapy causes microglia senescence and peripheral macrophage engraftment in the brain. Nat. Med. 28, 517–527 (2022).

Article  CAS  PubMed  Google Scholar 

Shibuya, Y. et al. Treatment of a genetic brain disease by CNS-wide microglia replacement. Sci. Transl. Med. 14, eabl9945 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeTomaso, D. et al. Functional interpretation of single cell similarity maps. Nat. Commun. 10, 4376 (2019).

Article  PubMed  PubMed Central  ADS  Google Scholar 

Hahn, O. et al. Atlas of the aging mouse brain reveals white matter as vulnerable foci. Cell 186, 4117–4133.e22 (2023).

Article  CAS  PubMed  Google Scholar 

International Multiple Sclerosis Genetics Consortium et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

Article  PubMed Central  Google Scholar 

Trobisch, T. et al. Cross-regional homeostatic and reactive glial signatures in multiple sclerosis. Acta Neuropathol. 144, 987–1003 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

Article  PubMed  PubMed Central  ADS  Google Scholar 

Hohsfield, L. A. et al. Effects of long-term and brain-wide colonization of peripheral bone marrow-derived myeloid cells in the CNS. J. Neuroinflammation 17, 279 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Z. et al. Efficient strategies for microglia replacement in the central nervous system. Cell Rep. 32, 108041 (2020).

Article  CAS  PubMed  Google Scholar 

Cronk, J. C. et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215, 1627–1647 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H. K. et al. Daam2-PIP5K Is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron 85, 1227–1243 (2015).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif