Sulfide oxidation promotes hypoxic angiogenesis and neovascularization

Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

Article  CAS  PubMed  Google Scholar 

Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

Article  CAS  PubMed  ADS  Google Scholar 

Folkman, J. Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006).

Article  CAS  PubMed  Google Scholar 

Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

Article  CAS  PubMed  Google Scholar 

Ribatti, D., Annese, T., Ruggieri, S., Tamma, R. & Crivellato, E. Limitations of anti-angiogenic treatment of tumors. Transl. Oncol. 12, 981–986 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Szabo, C. & Papapetropoulos, A. Hydrogen sulphide and angiogenesis: mechanisms and applications. Br. J. Pharmacol. 164, 853–865 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rushing, A. M. et al. Effects of a novel hydrogen sulfide prodrug in a porcine model of acute limb ischemia. J. Vasc. Surg. 69, 1924–1935 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Coletta, C. et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl Acad. Sci. USA 109, 9161–9166 (2012).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Papapetropoulos, A. et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 106, 21972–21977 (2009).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Longchamp, A. et al. Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173, 117–129 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olson, K. R. et al. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J. Exp. Biol. 209, 4011–4023 (2006).

Article  CAS  PubMed  Google Scholar 

Morikawa, T. et al. Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc. Natl Acad. Sci. USA 109, 1293–1298 (2012).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Singh, S. & Banerjee, R. PLP-dependent H2S biogenesis. Biochim. Biophys. Acta 1814, 1518–1527 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou, C.-G. & Banerjee, R. Homocysteine and redox signaling. Antioxid. Redox Signal. 7, 547–559 (2005).

Article  CAS  PubMed  Google Scholar 

Vitvitsky, V. et al. Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R39–R46 (2004).

Article  CAS  PubMed  Google Scholar 

Kumar, R. & Banerjee, R. Regulation of the redox metabolome and thiol proteome by hydrogen sulfide. Crit. Rev. Biochem. Mol. Biol. 56, 221–235 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanna, D., Kumar, R. & Banerjee, R. A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. Antioxid. Redox Signal. 38, 57–67 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee, R. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr. Opin. Chem. Biol. 37, 115–121 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kozich, V. et al. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H2S homeostasis. Redox Biol. 58, 102517 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiku, T. et al. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem. 284, 11601–11612 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weeks, C. L., Singh, S., Madzelan, P., Banerjee, R. & Spiro, T. G. Heme regulation of human cystathionine β-synthase activity: insights from fluorescence and Raman spectroscopy. J. Am. Chem. Soc. 131, 12809–12816 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, S., Madzelan, P. & Banerjee, R. Properties of an unusual heme cofactor in PLP-dependent cystathionine β-synthase. Nat. Prod. Rep. 24, 631–639 (2007).

Article  CAS  PubMed  Google Scholar 

Kabil, O., Yadav, V. & Banerjee, R. Heme-dependent metabolite switching regulates H2S synthesis in response to ER stress. J. Biol. Chem. 291, 16418–16423 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furne, J., Saeed, A. & Levitt, M. D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1479–R1485 (2008).

Article  CAS  PubMed  Google Scholar 

Vitvitsky, V., Kabil, O. & Banerjee, R. High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid. Redox Signal. 17, 22–31 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libiad, M. et al. Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J. Biol. Chem. 294, 12077–12090 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee, R. & Kumar, R. Gas regulation of complex II reversal via electron shunting to fumarate in the mammalian ETC. Trends Biochem. Sci. 47, 689–698 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vitvitsky, V. et al. The mitochondrial NADH pool is involved in hydrogen sulfide signaling and stimulation of aerobic glycolysis. J. Biol. Chem. 296, 100736 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanna, D. A., Vitvitsky, V. & Banerjee, R. A growth chamber for chronic exposure of mammalian cells to H2S. Anal. Biochem. 673, 115191 (2023).

Article  CAS  PubMed  Google Scholar 

Carballal, S. et al. Hydrogen sulfide stimulates lipid biogenesis from glutamine that is dependent on the mitochondrial NAD(P)H pool. J. Biol. Chem. 297, 100950 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

Article  PubMed  Google Scholar 

Diebold, L. P. et al. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat. Metab. 1, 158–171 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, R. et al. A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H2S oxidation. J. Biol. Chem. 298, 101435 (2022).

Article  CAS  PubMed  Google Scholar 

Spinelli, J. B. et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science 374, 1227–1237 (2021).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Marutani, E. et al. Sulfide catabolism ameliorates hypoxic brain injury. Nat. Commun. 12, 3108 (2021).

Article 

留言 (0)

沒有登入
gif