cGAS-STING pathway mediates activation of dendritic cell sensing of immunogenic tumors

Murciano-Goroff YR, Warner AB, Wolchok JD (2020) The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res 30(6):507–519. https://doi.org/10.1038/s41422-020-0337-2

Article  PubMed  PubMed Central  Google Scholar 

Kim TK, Vandsemb EN, Herbst RS et al. (2022) Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discov 21(7):529–540. https://doi.org/10.1038/s41573-022-00493-5

Article  CAS  PubMed  Google Scholar 

Pagès F, Mlecnik B, Marliot F et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. The Lancet 391(10135):2128–2139. https://doi.org/10.1016/S0140-6736(18)30789-X

Article  Google Scholar 

Shum B, Larkin J, Turajlic S (2022) Predictive biomarkers for response to immune checkpoint inhibition. Semin Cancer Biol 79:4–17. https://doi.org/10.1016/j.semcancer.2021.03.036

Article  CAS  PubMed  Google Scholar 

Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

Article  CAS  PubMed  Google Scholar 

Galluzzi L, Buqué A, Kepp O et al. (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111. https://doi.org/10.1038/nri.2016.107

Article  CAS  PubMed  Google Scholar 

Linsley PS, Speake C, Whalen E et al (2014) Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. PLoS ONE 9(10):e109760. https://doi.org/10.1371/journal.pone.0109760

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, Wu J, Du F et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. https://doi.org/10.1126/science.1232458

Article  ADS  CAS  PubMed  Google Scholar 

Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792. https://doi.org/10.1038/nature08476

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kwon J, Bakhoum SF (2020) The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov 10(1):26–39. https://doi.org/10.1158/2159-8290.CD-19-0761

Article  CAS  PubMed  Google Scholar 

Wang D, Zhao H, Shen Y et al (2022) A Variety of nucleic acid species are sensed by cGAS, implications for its diverse functions. Front Immunol 13:826880. https://doi.org/10.3389/fimmu.2022.826880

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang KS, Xu CQ, Lv J (2021) Identification and validation of the prognostic value of cyclic GMP-AMP synthase-stimulator of interferon (cGAS-STING) related genes in gastric cancer. Bioengineered 12(1):1238–1250. https://doi.org/10.1080/21655979.2021.1911557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luksch H, Stinson WA, Platt DJ et al. (2019) STING-associated lung disease in mice relies on T cells but not type I interferon. J Allergy Clin Immunol 144(1):254–266.e258. https://doi.org/10.1016/j.jaci.2019.01.044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guilliams M, Ginhoux F, Jakubzick C et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578. https://doi.org/10.1038/nri3712

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balan S, Saxena M, Bhardwaj N (2019) Dendritic cell subsets and locations. Int Rev Cell Mol Biol 348:1–68. https://doi.org/10.1016/bs.ircmb.2019.07.004

Article  CAS  PubMed  Google Scholar 

Maraskovsky E, Daro E, Roux E et al (2000) In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96(3):878–884. https://doi.org/10.1182/blood.V96.3.878

Article  CAS  PubMed  Google Scholar 

Laoui D, Keirsse J, Morias Y et al (2016) The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat Commun 7:13720. https://doi.org/10.1038/ncomms13720

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Michea P, Noel F, Zakine E et al (2018) Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat Immunol 19(8):885–897. https://doi.org/10.1038/s41590-018-0145-8

Article  CAS  PubMed  Google Scholar 

Salmon H, Idoyaga J, Rahman A et al (2016) Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44(4):924–938. https://doi.org/10.1016/j.immuni.2016.03.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Zhang X, Cheng Y et al (2021) Dendritic cell migration in inflammation and immunity. Cell Mol Immunol 18(11):2461–2471. https://doi.org/10.1038/s41423-021-00726-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruedl C, Kopf M, Bachmann MF (1999) CD8(+) T cells mediate CD40-independent maturation of dendritic cells in vivo. J Exp Med 189(12):1875–1884. https://doi.org/10.1084/jem.189.12.1875

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manickasingham S, Reis e Sousa C (2000) Microbial and T cell-derived stimuli regulate antigen presentation by dendritic cells in vivo. J Immunol 165(9):5027–5034. https://doi.org/10.4049/jimmunol.165.9.5027

Article  CAS  PubMed  Google Scholar 

Muraille E, De Trez C, Pajak B et al (2002) T cell-dependent maturation of dendritic cells in response to bacterial superantigens. J Immunol 168(9):4352–4360. https://doi.org/10.4049/jimmunol.168.9.4352

Article  CAS  PubMed  Google Scholar 

Mailliard RB, Egawa S, Cai Q et al (2002) Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med 195(4):473–483. https://doi.org/10.1084/jem.20011662

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cancel JC, Crozat K, Dalod M et al (2019) Are conventional type 1 dendritic cells critical for protective antitumor immunity and how? Front Immunol 10:9. https://doi.org/10.3389/fimmu.2019.00009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bachem A, Guttler S, Hartung E et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281. https://doi.org/10.1084/jem.20100348

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crozat K, Guiton R, Contreras V et al (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1283–1292. https://doi.org/10.1084/jem.20100223

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flinsenberg TW, Compeer EB, Koning D et al (2012) Fcgamma receptor antigen targeting potentiates cross-presentation by human blood and lymphoid tissue BDCA-3+ dendritic cells. Blood 120(26):5163–5172. https://doi.org/10.1182/blood-2012-06-434498

Article  CAS  PubMed  Google Scholar 

Nierkens S, Tel J, Janssen E et al (2013) Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends Immunol 34(8):361–370. https://doi.org/10.1016/j.it.2013.02.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang-Huau TL, Gueguen P, Goudot C et al (2018) Human in vivo-generated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway. Nat Commun 9(1):2570. https://doi.org/10.1038/s41467-018-04985-0

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cruz FM, Colbert JD, Merino E et al (2017) The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol 35:149–176. https://doi.org/10.1146/annurev-immunol-041015-055254

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif