Nutritional Immunity and Fungal Pathogens: A New Role for Manganese

Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature. 2009;460(7257):823–30. https://doi.org/10.1038/nature08300nature08300.

Article  CAS  PubMed  Google Scholar 

• Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol. 2022;20(11):657–70. https://doi.org/10.1038/s41579-022-00745-6. Comprehensive review on nutritional immunity involving metals including manganese.

Wilson D. Chapter two - the role of zinc in the pathogenicity of human fungal pathogens. In: Gadd GM, Sariaslani S, editors. Advances in applied microbiology. Academic Press; 2021. p. 35–61.

Google Scholar 

Gupta M, Outten CE. Iron-sulfur cluster signaling: the common thread in fungal iron regulation. Curr Opin Chem Biol. 2020;55:189–201. https://doi.org/10.1016/j.cbpa.2020.02.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith AD, Logeman BL, Thiele DJ. Copper acquisition and utilization in fungi. Annu Rev Microbiol. 2017;71:597–623. https://doi.org/10.1146/annurev-micro-030117-020444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, et al. Superoxide dismutases and superoxide reductases. Chem Rev. 2014;114(7):3854–918. https://doi.org/10.1021/cr4005296.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Culbertson EM, Bruno VM, Cormack BP, Culotta VC. Expanded role of the Cu-sensing transcription factor Mac1p in Candida albicans. Mol Microbiol. 2020;114(6):1006–18. https://doi.org/10.1111/mmi.14591.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li CX, Gleason JE, Zhang SX, Bruno VM, Cormack BP, Culotta VC. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc Natl Acad Sci U S A. 2015;112(38):E5336–42. https://doi.org/10.1073/pnas.1513447112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avila DS, Puntel RL, Aschner M. Manganese in health and disease. Met Ions Life Sci. 2013;13:199–227. https://doi.org/10.1007/978-94-007-7500-8_7.

Article  PubMed  PubMed Central  Google Scholar 

Bates S, Hughes HB, Munro CA, Thomas WP, MacCallum DM, Bertram G, et al. Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem. 2006;281(1):90–8. https://doi.org/10.1074/jbc.M510360200.

Article  CAS  PubMed  Google Scholar 

Bai C, Xu XL, Chan FY, Lee RT, Wang Y. MNN5 encodes an iron-regulated alpha-1,2-mannosyltransferase important for protein glycosylation, cell wall integrity, morphogenesis, and virulence in Candida albicans. Eukaryot Cell. 2006;5(2):238–47. https://doi.org/10.1128/ec.5.2.238-247.2006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Essential metals in health and disease. Chem Biol Interact. 2022;367: 110173. https://doi.org/10.1016/j.cbi.2022.110173.

Article  CAS  PubMed  Google Scholar 

•• Nicastro R, Gaillard H, Zarzuela L, Péli-Gulli MP, Fernández-García E, Tomé M, et al. Manganese is a physiologically relevant TORC1 activator in yeast and mammals. Elife. 2022;11. https://doi.org/10.7554/eLife.80497. First to show a role for Mn in fungal TOR signaling.

• Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol. 2022;10:988866. https://doi.org/10.3389/fcell.2022.988866. Role for NRAMP transporters in nutritional immunity including manganese.

West AH, Clark DJ, Martin J, Neupert W, Hart FU, Horwich AL. Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. J Biol Chem. 1992;267:24625–33.

Article  CAS  PubMed  Google Scholar 

Liu XF, Culotta VC. Post-translational control of Nramp metal transport in yeast: role of metal ions and the BSD2 gene. J Biol Chem. 1999;274:4863–8.

Article  CAS  PubMed  Google Scholar 

Liu XF, Supek F, Nelson N, Culotta VC. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem. 1997;272:11763–9.

Article  CAS  PubMed  Google Scholar 

Luk E, Culotta VC. Manganese superoxide dismutase in S. cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transproter, Smf2p. J Biol Chem. 2001;276:47556–62.

Liu XF, Culotta VC. Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol. 1999;289(4):885–91. https://doi.org/10.1006/jmbi.1999.2815.

Article  CAS  PubMed  Google Scholar 

Jensen LT, Ajua-Alemanji M, Culotta VC. The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem. 2003;278:42036–40.

Article  CAS  PubMed  Google Scholar 

Trilisenko L, Zvonarev A, Valiakhmetov A, Penin AA, Eliseeva IA, Ostroumov V, et al. The reduced level of inorganic polyphosphate mobilizes antioxidant and manganese-resistance systems in Saccharomyces cerevisiae. Cells. 2019;8(5). https://doi.org/10.3390/cells8050461.

Stimpson HE, Lewis MJ, Pelham HR. Transferrin receptor-like proteins control the degradation of a yeast metal transporter. Embo j. 2006;25(4):662–72. https://doi.org/10.1038/sj.emboj.7600984.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sullivan JA, Lewis MJ, Nikko E, Pelham HR. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro. Mol Biol Cell. 2007;18(7):2429–40. https://doi.org/10.1091/mbc.e07-01-0011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikko E, Sullivan JA, Pelham HR. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO Rep. 2008;9(12):1216–21. https://doi.org/10.1038/embor.2008.199.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikko E, Pelham HR. Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic. 2009;10(12):1856–67. https://doi.org/10.1111/j.1600-0854.2009.00990.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen LT, Carroll MC, Hall MD, Harvey CJ, Beese SE, Culotta VC. Down-regulation of a manganese transporter in the face of metal toxicity. Mol Biol Cell. 2009;20(12):2810–9. https://doi.org/10.1091/mbc.E08-10-1084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durr G, Strayle J, Plemper R, Elbs S, Klee SK, Catty P, et al. The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Molec Biol Cell. 1998;9:1149–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudolph HK, Antebi A, Fink GR, Buckley CM, Dorman TE, LeVitre J, et al. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca+2-ATPase family. Cell. 1989;58:133–45.

Article  CAS  PubMed  Google Scholar 

Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta VC. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol Cell Biol. 1995;15:1382–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thines L, Deschamps A, Sengottaiyan P, Savel O, Stribny J, Morsomme P. The yeast protein Gdt1p transports Mn(2+) ions and thereby regulates manganese homeostasis in the Golgi. J Biol Chem. 2018;293(21):8048–55. https://doi.org/10.1074/jbc.RA118.002324.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Deschamps A, Thines L, Colinet AS, Stribny J, Morsomme P. The yeast Gdt1 protein mediates the exchange of H(+) for Ca(2+) and Mn(2+) influencing the Golgi pH. J Biol Chem. 2023;299(5):104628. https://doi.org/10.1016/j.jbc.2023.104628. Description of the mechanism of action of the Golgi Mn and Ca transporter GDT1.

Luk E, Carroll M, Baker M, Culotta VC. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci USA. 2003;100:10353–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang M, Cobine PA, Molik S, Naranuntarat A, Lill R, Winge DR, et al. The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J. 2006;25:1775–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naranuntarat A, Jensen LT, Pazicni S, Penner-Hahn JE, Culotta VC. The interaction of mitochondrial iron with manganese superoxide dismutase. J Biol Chem. 2009;284(34):22633–40. https://doi.org/10.1074/jbc.M109.026773.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolff NA, Garrick MD, Zhao L, Garrick LM, Ghio AJ, Thévenod F. A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci Rep. 2018;8(1):211. https://doi.org/10.1038/s41598-017-18584-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolff NA, Garrick LM, Zhao L, Garrick MD, Thévenod F. Mitochondria represent another locale for the divalent metal transporter 1 (DMT1). Channels (Austin). 2014;8(5):458–66. https://doi.org/10.4161/19336950.2014.956564.

Article  PubMed  Google Scholar 

• Bozzi AT, Gaudet R. Molecular mechanism of Nramp-family transition metal transport. J Mol Biol. 2021;433(1

留言 (0)

沒有登入
gif