Human Bronchial Epithelial Cell Transcriptome Changes in Response to Serum from Patients with Different Status of Inflammation

Safiri S, Carson-Chahhoud K, Noori M, Nejadghaderi SA, Sullman MJM, Ahmadian Heris J, Ansarin K, Mansournia MA, Collins GS, Kolahi A-A, Kaufman JS (2022) Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990–2019: results from the Global Burden of Disease Study 2019. BMJ 378:e069679. https://doi.org/10.1136/bmj-2021-069679

Article  PubMed  PubMed Central  Google Scholar 

Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE (2020) Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife 9:e53072. https://doi.org/10.7554/eLife.53072

Article  PubMed  PubMed Central  Google Scholar 

Hewitt RJ, Lloyd CM (2021) Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21(6):347–362. https://doi.org/10.1038/s41577-020-00477-9

Article  PubMed  PubMed Central  Google Scholar 

Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, Debnath O, Thürmann L, Kurth F, Völker MT, Kazmierski J, Timmermann B, Twardziok S, Schneider S, Machleidt F, Müller-Redetzky H, Maier M, Krannich A, Schmidt S, Balzer F, Liebig J, Loske J, Suttorp N, Eils J, Ishaque N, Liebert UG, von Kalle C, Hocke A, Witzenrath M, Goffinet C, Drosten C, Laudi S, Lehmann I, Conrad C, Sander L-E, Eils R (2020) COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol 38(8):970–979. https://doi.org/10.1038/s41587-020-0602-4

Article  PubMed  Google Scholar 

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 130(5):2620–2629. https://doi.org/10.1172/jci137244

Article  PubMed  PubMed Central  Google Scholar 

Martin TR (2022) Lung injury and repair in coronavirus disease 2019-related acute lung injury. Am J Pathol 192(3):406–409. https://doi.org/10.1016/j.ajpath.2022.01.001

Article  PubMed  Google Scholar 

Upadhya S, Rehman J, Malik AB, Chen S (2022) Mechanisms of lung injury induced by SARS-CoV-2 infection. Physiology 37(2):88–100. https://doi.org/10.1152/physiol.00033.2021

Article  PubMed  Google Scholar 

Zamani Rarani F, Zamani Rarani M, Hamblin MR, Rashidi B, Hashemian SMR, Mirzaei H (2022) Comprehensive overview of COVID-19-related respiratory failure: focus on cellular interactions. Cell Mol Biol Lett 27(1):63. https://doi.org/10.1186/s11658-022-00363-3

Article  PubMed  PubMed Central  Google Scholar 

Busse WW, Lemanske RF Jr, Gern JE (2010) Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376(9743):826–834. https://doi.org/10.1016/s0140-6736(10)61380-3

Article  PubMed  PubMed Central  Google Scholar 

Greenberg SB (2002) Respiratory viral infections in adults. Curr Opin Pulm Med 8(3):201–208. https://doi.org/10.1097/00063198-200205000-00009

Article  PubMed  Google Scholar 

Kopfnagel V, Bernemann I, Klopp N, Kersting M, Nizhegorodtseva N, Prokein J, Lehmann U, Stark H, Illig T (2021) The Hannover Unified Biobank (HUB)—centralized standardised biobanking at Hannover Medical School. Open J Bioresour. https://doi.org/10.5334/ojb.70

Article  Google Scholar 

Characterisation WHOWGotC, Management of C-i (2020) A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis 20(8):e192–e197. https://doi.org/10.1016/S1473-3099(20)30483-7

Article  Google Scholar 

Ercetin E, Richtmann S, Delgado BM, Gomez-Mariano G, Wrenger S, Korenbaum E, Liu B, DeLuca D, Kuhnel MP, Jonigk D, Yuskaeva K, Warth A, Muley T, Winter H, Meister M, Welte T, Janciauskiene S, Schneider MA (2019) Clinical significance of SERPINA1 gene and its encoded Alpha1-antitrypsin protein in NSCLC. Cancers 11(9):1306. https://doi.org/10.3390/cancers11091306

Article  PubMed  PubMed Central  Google Scholar 

Wickham H (2011) ggplot2. Wiley Interdiscip Rev 3(2):180–185. https://doi.org/10.1002/wics.147

Article  MathSciNet  Google Scholar 

Kolde R, Kolde MR (2015) Package ‘pheatmap.’ R package 1(7):790

Google Scholar 

Slowikowski K, Hughes S, Lukauskas S, risson J-O, Kamvar ZN, Ryan T, Christopher D, Hiroaki Y, Gramme P (2018) Package ggrepel. Automatically position non-overlapping text labels with ‘ggplot2’. https://CRAN.R-project.org/package=ggrepel

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. https://doi.org/10.1186/1471-2105-14-128

Article  Google Scholar 

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90-97. https://doi.org/10.1093/nar/gkw377

Article  PubMed  PubMed Central  Google Scholar 

Heinen N, Klohn M, Steinmann E, Pfaender S (2021) In vitro lung models and their application to study SARS-CoV-2 pathogenesis and disease. Viruses 13(5):792. https://doi.org/10.3390/v13050792

Article  PubMed  PubMed Central  Google Scholar 

Mulay A, Konda B, Garcia G Jr, Yao C, Beil S, Sen C, Purkayastha A, Kolls JK, Pociask DA, Pessina P, de Aja JS, Garcia-de-Alba C, Kim CF, Gomperts B, Arumugaswami V, Stripp BR (2020) SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. bioRxiv. https://doi.org/10.1101/2020.06.29.174623

Article  PubMed  PubMed Central  Google Scholar 

Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60(2):193–205. https://doi.org/10.1016/j.ejpb.2005.02.010

Article  PubMed  Google Scholar 

Huang DT, Lu CY, Chi YH, Li WL, Chang LY, Lai MJ, Chen JS, Hsu WM, Huang LM (2017) Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells. Sci Rep 7(1):11300. https://doi.org/10.1038/s41598-017-10749-5

Article  ADS  PubMed  PubMed Central  Google Scholar 

Xiao L-N, Ran X, Zhong Y-X, Li S-S (2021) Clinical value of blood markers to assess the severity of coronavirus disease 2019. BMC Infect Dis 21(1):921. https://doi.org/10.1186/s12879-021-06623-5

Article  PubMed  PubMed Central  Google Scholar 

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395(10229):1033–1034. https://doi.org/10.1016/s0140-6736(20)30628-0

Article  PubMed  PubMed Central  Google Scholar 

Shibabaw T (2020) Inflammatory cytokine: IL-17A signaling pathway in patients present with COVID-19 and current treatment strategy. J Inflamm Res 13:673–680. https://doi.org/10.2147/jir.S278335

Article  PubMed  PubMed Central  Google Scholar 

Bordoni V, Mariotti D, Matusali G, Colavita F, Cimini E, Ippolito G, Agrati C (2022) SARS-CoV-2 infection of airway epithelium triggers pulmonary endothelial cell activation and senescence associated with type I IFN production. Cells 11(18):2912. https://doi.org/10.3390/cells11182912

Article  PubMed  PubMed Central  Google Scholar 

Dupont A, Rauch A, Staessens S, Moussa M, Rosa M, Corseaux D, Jeanpierre E, Goutay J, Caplan M, Varlet P, Lefevre G, Lassalle F, Bauters A, Faure K, Lambert M, Duhamel A, Labreuche J, Garrigue D, De Meyer SF, Staels B, Vincent F, Rousse N, Kipnis E, Lenting P, Poissy J, Susen S (2021) Vascular endothelial damage in the pathogenesis of organ injury in severe COVID-19. Arterioscler Thromb Vasc Biol 41(5):1760–1773. https://doi.org/10.1161/atvbaha.120.315595

Article  PubMed  Google Scholar 

Tong M, Jiang Y, Xia D, Xiong Y, Zheng Q, Chen F, Zou L, Xiao W, Zhu Y (2020) Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J Infect Dis 222(6):894–898. https://doi.org/10.1093/infdis/jiaa349

Article  PubMed  Google Scholar 

Lowenstein CJ, Solomon SD (2020) Severe COVID-19 is a microvascular disease. Circulation 142(17):1609–1611. https://doi.org/10.1161/circulationaha.120.050354

Article  PubMed  PubMed Central  Google Scholar 

Teuwen LA, Geldhof V, Pasut A, Carmeliet P (2020) COVID-19: the vasculature unleashed. Nat Rev Immunol 20(7):389–391. https://doi.org/10.1038/s41577-020-0343-0

Article  PubMed  PubMed Central  Google Scholar 

Shang Y, Liu T, Wei Y, Li J, Shao L, Liu M, Zhang Y, Zhao Z, Xu H, Peng Z, Zhou F, Wang X (2020) Scoring systems for predicting mortality for severe patients with COVID-19. EClinicalMedicine 24:100426. https://doi.org/10.1016/j.eclinm.2020.100426

Article  PubMed  PubMed Central  Google Scholar 

Xi X, Guo Y, Zhu M, Wei Y, Li G, Du B, Wang Y (2021) Higher expression of monocyte chemotactic protein 1 in mild COVID-19 patients might be correlated with inhibition of Type I IFN signaling. Virol J 18(1):12. https://doi.org/10.1186/s12985-020-01478-9

Article  PubMed  PubMed Central  Google Scholar 

Aziz M, Fatima R, Lee-Smith W, Assaly R (2020) The association of low serum albumin level with severe COVID-19: a systematic review and meta-analysis. Crit Care 24(1):255. https://doi.org/10.1186/s13054-020-02995-3

Article  PubMed  PubMed Central  Google Scholar 

Paliogiannis P, Mangoni AA, Cangemi M, Fois AG, Carru C, Zinellu A (2021) Serum albumin concentrations are associated with disease severity and outcomes in coronavirus 19 disease (COVID-19): a systematic review and meta-analysis. Clin Exp Med 21(3):343–354. https://doi.org/10.1007/s10238-021-00686-z

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif