Aguinis, H. et Gottfredson, R. K. (2010). Best-practice recommendations for estimating interaction effects using moderated multiple regression. Journal of Organizational Behavior, 31(6), 776-786.
Allison, P. D. (1990). Change scores as dependent variables in regression analysis. Sociological Methodology, 20(1), 93-114.
Article MathSciNet Google Scholar
Alon, N. L. et Tal, T. (2015). Student Self-Reported Learning Outcomes of Field Trips: The pedagogical impact. International Journal of Science Education, 37(8), 1279-1298. https://doi.org/10.1080/09500693.2015.1034797
Appleton, K. (2010). Elementary science teaching. Dans S. K. Abell et N. Lederman (dir.), Handbook of Research on Science Education. (1re éd., p. 493-535). Routledge. https://doi-org.acces.bibl.ulaval.ca/10.4324/9780203824696
Archer, L., Dawson, E., DeWitt, J., Seakins, A. et Wong, B. (2015). “Science capital”: A conceptual, methodological, and empirical argument for extending bourdieusian notions of capital beyond the arts. Journal of Research in Science Teaching, 52(7), 922-948. https://doi.org/10.1002/tea.21227
Bandura, A. (2007). Auto-efficacité : le sentiment d'efficacité personnelle (2e éd.). De Boeck.
Behrendt, M. et Franklin, T. (2014). A Review of Research on School Field Trips and Their Value in Education. International Journal of Environmental and Science Education, 9(3), 235-245.
Boeve-de Pauw, J., Ardies, J., Hens, K., Wullemen, A., Van de Vyver, Y., Rydant, T., De Spiegeleer, L. et Verbraeken, H. (2020). Short and long term impact of a high-tech STEM intervention on pupils’ attitudes towards technology. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-020-09627-5
Brisson, G., Harvey, M.-F., & Moffet, J.-D. (2013). L'enseignement de la science et de la technologie au primaire et au premier cycle du secondaire: avis à la ministre de l'Éducation, du Loisir et du Sport. Québec: Conseil supérieur de l'éducation. http://collections.banq.qc.ca/ark:/52327/2316336
Britner, S. L. (2002). Science Self-Efficacy of African American Middle School Students: Relationship to Motivation Self-Beliefs, Achievement, Gender, and Gender Orientation (Publication Number 3050081) [Dissertation, Emory University]. ProQuest Dissertations & Theses Global.
Britner, S. L. (2008). Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching, 45(8), 955-970. https://doi.org/10.1002/tea.20249
Britner, S. L. et Pajares, F. (2006). Sources of Science Self-Efficacy Beliefs of Middle School Students. Journal of Research in Science Teaching, 43(5), 485-499. https://doi.org/10.1002/tea.20131
Cavas, P. (2011). Factors Affecting the Motivation of Turkish Primary Students for Science Learning. Science Education International, 22(1), 31-42.
Christidou, V. (2011). Interest, Attitudes and Images Related to Science: Combining Students' Voices with the Voices of School Science, Teachers, and Popular Science. International Journal of Environmental and Science Education, 6(2), 141-159.
Dairianathan, A. et Subramaniam, R. (2011). Learning about Inheritance in an Out-of-School Setting. International Journal of Science Education, 33(8), 1079-1108.
Dionne, L., Trudel, L. et Reis, G. (2013). Partenariats entre milieux éducatifs pour l'essor de l'éducation scientifique : recherches et pratiques novatrices. Presses de l'Université Laval.
Drouin, E. (2005). Meta-analyse de l'impact des programmes d'intervention visant la promotion des etudes et carrieres en sciences et technologies [Mémoire de maitrise inédit]. Université Laval.
Eccles, J. S., Adler, T. F., Futterman, T., Goff, S. B., Kaczala, C. M., Meece, J. L. et Midgley, C. (1983). Expectancies, values, and academic behaviors. Dans J. T. Spence (dir.), Achievement and achievement motives (p. 75–146). W. H. Freeman.
Eccles, J. S. et Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemporary educational psychology, 61, 101859. https://doi.org/10.1016/j.cedpsych.2020.101859
Gagnon, M., Blackburn, M.-È., Arbour, N. et Gaudreault, M. (2009). Intérêt des jeunes Saguenéens et Jeannois pour la science et la technologie: un état de la situation. ÉCOBE, Cégep de Jonquière.
Gokpinar, T. et Reiss, M. (2016). The role of outside-school factors in science education: a two-stage theoretical model linking Bourdieu and Sen, with a case study. International Journal of Science Education, 38(8), 1278-1303. https://doi.org/10.1080/09500693.2016.1188332
Hasni, A. (2005). La culture scientifique et technologique à l'école: de quelle culture s' agit-il et quelles conditions mettre en place pour la développer. Dans D. Simard et M. h. Mellouki (dir.), L'enseignement profession intellectuelle (p. 105–134). Presses de l'Université Laval.
Hasni, A. et Potvin, P. (2015). Student’s Interest in Science and Technology and its Relationships with Teaching Methods, Family Context and Self-Efficacy. International Journal of Environmental & Science Education, 10(3), 337-366.
Koballa, T. R. et Glynn, S. M. (2010). Attitudinal and Motivational Constructs in Science Learning. Dans S. K. Abell et N. G. Lederman (dir.), Handbook of research on science education (1re éd., p. 75-102). Routledge. https://doi-org.acces.bibl.ulaval.ca/10.4324/9780203824696
Larose, S., Guay, F., Senécal, C., Harvey, M., Drouin, E. et Delisle, M.-N. (2005). Persévérance scolaire des étudiants de Sciences et Génie (S&G) à l'Université Laval: Le rôle de la culture, motivation et socialisation scientifiques. http://www.researchgate.net/profile/Simon_Larose/publication/272791061_Persvrance_scolaire_des_tudiants_de_Sciences_et_Gnie_(SG)__lUniversit_Laval_Le_rle_de_la_culture_motivation_et_socialisation_scientifiques/links/54ee5bbc0cf25238f93a37fd.pdf
Leach, A. E. (2012). Evaluating the impact of an informal elementary school field science education program [Profesionnal paper, Montana State University]. Scholarworks. https://scholarworks.montana.edu/xmlui/handle/1/1712
Lirette-Pitre, N. (2013). Éveiller l'intérêt aux sciences. Dans L. Dionne, L. Trudel et G. Reis (dir.), Partenariats entre milieux éducatifs pour l'essor de l'éducation scientifique: recherches et pratiques novatrices (p. 57–73). Presses de l'Université Laval.
Lisée, V. (2008). Représentations sociales de l'importance des sciences et technologies et de la culture scientifique et technologique dans l'enseignement et la formation à l'enseignement primaire au Québec chez des futures enseignant(e)es (Publication Number MR42987) [Mémoire de maitrise, Université de Sherbrooke]. ProQuest Dissertations and Theses Global.
Little, R. J. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404), 1198-1202.
Article MathSciNet Google Scholar
McCoach, D. B. et Adelson, J. L. (2010). Dealing with dependence (Part I): Understanding the effects of clustered data. Gifted Child Quarterly, 54(2), 152-155.
Motivation. (2005). Dans R. Legendre (dir). Dictionnaire actuel de l'éducation (3e éd., p. 915). Guérin.
Muller, C. L., Roberts, S., Wilson, R. C., Remedios, J. J., Illingworth, S., Graves, R., Trent, T., Henderson, J., Wilkinson, J., Wilkinson, M. et Desai, A. (2013). The Blue Marble: A Model for Primary School STEM Outreach. Physics Education, 48(2), 176-183.
Murphy, S., MacDonald, A., Wang, C. A. et Danaia, L. (2019). Towards an Understanding of STEM Engagement: a Review of the Literature on Motivation and Academic Emotions. Canadian Journal of Science Mathematics and Technology Education, 19(3), 304-320. https://doi.org/10.1007/s42330-019-00054-w
Muthén, B. O. (2002). Beyond SEM: general latent variable modeling. Behaviormetrika, 29(1), 81-117. https://doi.org/10.2333/bhmk.29.81
Article MathSciNet Google Scholar
Ozogul, G., Miller, C. F. et Reisslein, M. (2019). School fieldtrip to engineering workshop: pre-, post-, and delayed-post effects on student perceptions by age, gender, and ethnicity. European Journal of Engineering Education, 44(5), 745-768. https://doi.org/10.1080/03043797.2018.1518408
Pajares, F., Hartley, J. et Valiante, G. (2001). Response format in writing self-efficacy assessment: Greater discrimination increases prediction. Measurement and evaluation in counseling and development, 33(4), 214-221.
Perry, B. L., Link, T., Boelter, C. et Leukefeld, C. (2012). Blinded to science: gender differences in the effects of race, ethnicity, and socioeconomic status on academic and science attitudes among sixth graders. Gender and Education, 24(7), 725-743. https://doi.org/10.1080/09540253.2012.685702
Potvin, P. et Hasni, A. (2014a). Analysis of the Decline in Interest Towards School Science and Technology from Grades 5 Through 11. Journal of Science Education and Technology, 23(6), 784-802. https://doi.org/10.1007/s10956-014-9512-x
Potvin, P. et Hasni, A. (2014b). Interest, motivation and attitude towards science and technology at K-12 levels: a systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85-129. https://doi.org/10.1080/03057267.2014.881626
Ratelle, C. F., Duchesne, S., Litalien, D. et Plamondon, A. (2021). The role of mothers in supporting adaptation in school: A psychological needs perspective. Journal of Educational Psychology, 113(1), 197-212. https://doi.org/10.1037/edu0000455
Rennie, L. (2014). Learning Science Outside of School. Dans S. K. Abell et N. Lederman (dir.), Handbook of Research on Science Education (vol. II, p. 120–144). Routledge.
Rennie, L. (2015). Making Science Beyond the Classroom Accessible to Students. Dans D. Corrigan, C. Buntting, J. Dillon, A. Jones & R. Gunstone (dir.), The Future in Learning Science: What’s in it for the Learner? (p. 151–173). Springer International Publishing. https://link.springer.com/book/10.1007/978-3-319-16543-1#book-header
Rosenzweig, E. Q. et Wigfield, A. (2016). STEM Motivation Interventions for Adolescents: A Promising Start, but Further to Go. Educational Psychologist, 51(2), 146-163. https://doi.org/10.1080/00461520.2016.1154792
Rosenzweig, E. Q., Wigfield, A. et Eccles, J. S. (2021). Beyond utility value interventions: The why, when, and how for next steps in expectancy-value intervention research. Educational Psychologist, 57(1), 11-30. https://doi.org/10.1080/00461520.2021.1984242
Roth, K. J. (2014). Elementary Science Teaching. Dans S. K. Abell et N. Lederman (dir.), Handbook of Research on Science Education (vol. II, p. 361–394). Routledge.
Sample McMeeking, L. B., Weinberg, A. E., Boyd, K. J. et Balgopal, M. M. (2016). Student Perceptions of Interest, Learning, and Engagement from an Informal Traveling Science Museum. School Science and Mathematics, 116(5), 253-264.
Sasson, I. et Cohen, D. (2013). Assessment for Effective Intervention: Enrichment Science Academic Program. Journal of Science Education and Technology, 22(5), 718-728. https://doi.org/10.1007/s10956-012-9425-5
Schiefer, J., Golle, J., Tibus, M., Herbein, E., Gindele, V., Trautwein, U. et Oschatz, K. (2020). Effects of an extracurricular science intervention on elementary school children's epistemic beliefs: A randomized controlled trial. British Journal of Educational Psychology, 90(2), 382-402. https://doi.org/10.1111/bjep.12301
Schunk, D. H. et Pajares, F. (2002). The development of academic self-efficacy. Dans A. W. J. S. Eccles (dir.), Development of achievement motivation (p. 15–31). Academic Press. https://doi.org/10.1016/B978-012750053-9/50003-6
Shanahan, M.-C., Pedretti, E., DeCoito, I. et Baker, L. (2011). Exploring the Responses of Underrepresented Students in Science to an Elementary Classroom Outreach Program. School Science and Mathematics, 111(4), 131-142. https://doi.org/10.1111/j.1949-8594.2011.00071.x
Simpkins, S. D., Davis-Kean, P. E. et Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental psychology, 42(1), 70-83. https://doi.org/10.1037/0012-1649.42.1.70
Statistique Canada. (2016). Enquête canadienne sur le revenu: modification apportée à la base démographique de référence, 2006 à 2013. Ministre de l'Industrie. https://www150.statcan.gc.ca/n1/pub/75f0002m/75f0002m2016003-fra.htm
Stocklmayer, S. M., Rennie, L. J. et Gilbert, J. K. (2010). The roles of the formal and informal sectors in the provision of effective science education. Studies in Science Education, 46(1), 1-44. https://doi.org/10.1080/03057260903562284
Sullivan, A. et Bers, M. U. (2019). Investigating the Use of Robotics to Increase Girls' Interest in Engineering during Early Elementary School. International Journal of Technology and Design Education, 29(5), 1033-1051.
Tabachnick, B. G. et Fidell, L. S. (2007). Using multivariate statistics (5e éd.). Pearson/Allyn & Bacon.
Théoret, M. (2009). Le sentiment d'efficacité d'enseignant(e)es du primaire dans la prise en charge de l'enseignement des sciences et des technologies [Mémoire de maitrise, Université du Québec à Montréal]. Archipel. http://www.archipel.uqam.ca/2538/
Tytler, R. (2014). Attitudes, Identities, and Aspirations Toward Science. Dans N. Lederman et S. K. Abell (dir.), Handbook of Research on Science Education (vol. II, p. 82–199). Routledge.
Weinberg, A. E., Basile, C. G. et al.bright, L. (2011). The Effect of an Experiential Learning Program on Middle School Students' Motivation toward Mathematics and Science. RMLE Online: Research in Middle Level Education, 35(3), 1-12.
Wigfield, A., Eccles, J. S., Fredricks, J. A., Simpkins, S., Roeser, R. W. et Schiefele, U. (2015). Development of Achievement Motivation and Engagement. Dans Handbook of Child Psychology and Developmental Science. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118963418.childpsy316
Young, J. R., Ortiz, N. et Young, J. L. (2017). STEMulating Interest: A Meta-Analysis of the Effects of Out-of-School Time on Student STEM Interest. International Journal of Education in Mathematics, Science and Technology, 5(1), 62-74.
留言 (0)