Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer’s disease

World Population Prospects: The 2017 Revision. Untied Nations. June 21, 2017. https://www.un.org/zh/desa/world-population-prospects-2017-revision.

Guerchet M, Prince M, Prina M. Numbers of people with dementia worldwide. Alzheimer's Disease International (ADI). November 30, 2020. https://www.alzint.org/resource/numbers-of-people-with-dementia-worldwide/.

Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s Dementia. 2023;19:658–70. https://doi.org/10.1002/alz.12694.

Article  PubMed  Google Scholar 

El-Gamal F, Elmogy MM, Ghazal M, Atwan A, Casanova MF, Barnes GN, et al. Medical imaging diagnosis of early Alzheimer’s disease. Frontiers in bioscience (Landmark edition). 2018;23:671–725. https://doi.org/10.2741/4612.

Article  Google Scholar 

Li S, He H, Cui W, Gu B, Li J, Qi Z, et al. Detection of Aβ plaques by a novel specific MRI probe precursor CR-BSA-(Gd-DTPA)n in APP/PS1 transgenic mice. Anatomical record (Hoboken, NJ 2007). 2010;293:2136–43. https://doi.org/10.1002/ar.21209.

Article  CAS  Google Scholar 

Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, et al. Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis. 2002;11:315–29. https://doi.org/10.1006/nbdi.2002.0550.

Article  CAS  PubMed  Google Scholar 

Koo J, Byun Y. Current status of PET-imaging probes of β-amyloid plaques. Arch Pharmacal Res. 2013;36:1178–84. https://doi.org/10.1007/s12272-013-0193-4.

Article  CAS  Google Scholar 

Zhu L, Ploessl K, Kung HF. PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev. 2014;43:6683–91. https://doi.org/10.1039/c3cs60430f.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang J, Cheng R, Fu H, Yang J, Kumar M, Lu J, et al. Half-curcumin analogues as PET imaging probes for amyloid beta species. Chem Commun (Camb). 2019;55:3630–3. https://doi.org/10.1039/c8cc10166c.

Article  CAS  PubMed  Google Scholar 

Staderini M, Martín MA, Bolognesi ML, Menéndez JC. Imaging of β-amyloid plaques by near infrared fluorescent tracers: a new frontier for chemical neuroscience. Chem Soc Rev. 2015;44:1807–19. https://doi.org/10.1039/c4cs00337c.

Article  CAS  PubMed  Google Scholar 

Yang J, Zeng F, Ge Y, Peng K, Li X, Li Y, et al. Development of near-infrared fluorescent probes for use in Alzheimer’s disease diagnosis. Bioconjug Chem. 2020;31:2–15. https://doi.org/10.1021/acs.bioconjchem.9b00695.

Article  CAS  PubMed  Google Scholar 

Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent diagnostic probes in neurodegenerative diseases. Advanced materials (Deerfield Beach, Fla). 2020;32: e2001945. https://doi.org/10.1002/adma.202001945.

Article  CAS  PubMed  Google Scholar 

Su D, Diao W, Li J, Pan L, Zhang X, Wu X, et al. Strategic design of amyloid-β species fluorescent probes for Alzheimer’s disease. ACS Chem Neurosci. 2022;13:540–51. https://doi.org/10.1021/acschemneuro.1c00810.

Article  CAS  PubMed  Google Scholar 

Kahlke T, Umbers KDL. Bioluminescence. Curr Biol. 2016;26:R313–4. https://doi.org/10.1016/j.cub.2016.01.007.

Article  CAS  PubMed  Google Scholar 

Zhang DY, Singhal S, Lee JYK. Optical principles of fluorescence-guided brain tumor surgery: a practical primer for the neurosurgeon. Neurosurgery. 2019;85:312–24. https://doi.org/10.1093/neuros/nyy315.

Article  PubMed  Google Scholar 

Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452:580–9. https://doi.org/10.1038/nature06917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang CC, Huang HB, Tsay HJ, Shiao MS, Wu WJ, Cheng YC, et al. Characterization of Aβ aggregation mechanism probed by Congo red. J Biomol Struct Dyn. 2012;30:160–9. https://doi.org/10.1080/07391102.2012.677767.

Article  CAS  PubMed  Google Scholar 

Rodríguez-Rodríguez C, Rimola A, Rodríguez-Santiago L, Ugliengo P, Alvarez-Larena A, Gutiérrez-de-Terán H, et al. Crystal structure of thioflavin-T and its binding to amyloid fibrils: insights at the molecular level. Chem Commun (Camb). 2010;46:1156–8. https://doi.org/10.1039/b912396b.

Article  CAS  PubMed  Google Scholar 

Biancalana M, Koide S. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochem Biophys Acta. 2010;1804:1405–12. https://doi.org/10.1016/j.bbapap.2010.04.001.

Article  CAS  PubMed  Google Scholar 

Wang Y, Liu T, Zhang E, Luo S, Tan X, Shi C. Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells. Biomaterials. 2014;35:4116–24. https://doi.org/10.1016/j.biomaterials.2014.01.061.

Article  CAS  PubMed  Google Scholar 

Yan JW, Zhu JY, Zhou KX, Wang JS, Tan HY, Xu ZY, et al. Neutral merocyanine dyes: for in vivo NIR fluorescence imaging of amyloid-β plaques. Chem Commun (Camb). 2017;53:9910–3. https://doi.org/10.1039/c7cc05056a.

Article  CAS  PubMed  Google Scholar 

Yang HL, Fang SQ, Tang YW, Wang C, Luo H, Qu LL, et al. A hemicyanine derivative for near-infrared imaging of β-amyloid plaques in Alzheimer’s disease. Eur J Med Chem. 2019;179:736–43. https://doi.org/10.1016/j.ejmech.2019.07.005.

Article  CAS  PubMed  Google Scholar 

Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev. 2007;107:4891–932. https://doi.org/10.1021/cr078381n.

Article  CAS  PubMed  Google Scholar 

Ojida A, Sakamoto T, Inoue MA, Fujishima SH, Lippens G, Hamachi I. Fluorescent BODIPY-based Zn(II) complex as a molecular probe for selective detection of neurofibrillary tangles in the brains of Alzheimer’s disease patients. J Am Chem Soc. 2009;131:6543–8. https://doi.org/10.1021/ja9008369.

Article  CAS  PubMed  Google Scholar 

Watanabe H, Ono M, Matsumura K, Yoshimura M, Kimura H, Saji H. Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes. Mol Imaging. 2013;12:338–47.

Article  CAS  PubMed  Google Scholar 

Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc. 2014;136:3388–94. https://doi.org/10.1021/ja4052922.

Article  CAS  PubMed  Google Scholar 

Fu H, Tu P, Zhao L, Dai J, Liu B, Cui M. Amyloid-β deposits target efficient near-infrared fluorescent probes: synthesis, in vitro evaluation, and in vivo imaging. Anal Chem. 2016;88:1944–50. https://doi.org/10.1021/acs.analchem.5b04441.

Article  CAS  PubMed  Google Scholar 

Kepp KP. Bioinorganic chemistry of Alzheimer’s disease. Chem Rev. 2012;112:5193–239. https://doi.org/10.1021/cr300009x.

Article  CAS  PubMed  Google Scholar 

Yang J, Zhang X, Yuan P, Yang J, Xu Y, Grutzendler J, et al. Oxalate-curcumin-based probe for micro- and macroimaging of reactive oxygen species in Alzheimer’s disease. Proc Natl Acad Sci USA. 2017;114:12384–9. https://doi.org/10.1073/pnas.1706248114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Tian Y, Li Z, Tian X, Sun H, Liu H, et al. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer’s disease. J Am Chem Soc. 2013;135:16397–409. https://doi.org/10.1021/ja405239v.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Tian Y, Zhang C, Tian X, Ross AW, Moir RD, et al. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci USA. 2015;112:9734–9. https://doi.org/10.1073/pnas.1505420112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Zeng F, Luo Y, Zheng C, Ran C, Yang J. Curcumin scaffold as a multifunctional tool for Alzheimer’s disease research. Molecules (Basel, Switzerland). 2022;27:3879. https://doi.org/10.3390/molecules27123879.

Article  CAS  PubMed  Google Scholar 

Li Y, Yang J, Liu H, Yang J, Du L, Feng H, et al. Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species. Chem Sci. 2017;8:7710–7. https://doi.org/10.1039/c7sc02050c.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Zhuang D, Wang J, Huang H, Li R, Wu C, et al. Recent advances in small molecular near-infrared fluorescence probes for a targeted diagnosis of the Alzheimer disease. Analyst. 2022;147:4701–23. https://doi.org/10.1039/d2an01327d.

Article  CAS  PubMed  Google Scholar 

Kenry, Duan Y, Liu B. Recent advances of optical imaging in the second near-infrared window. Advanced materials (Deerfield Beach, Fla). 2018;30:e1802394.

留言 (0)

沒有登入
gif