Transcriptomic contributions to a modern cytoarchitectonic parcellation of the human cerebral cortex

Abbott A (2003) Neuroscience: a new atlas of the brain. Nature 424:249–250. https://doi.org/10.1038/424249a

Article  ADS  CAS  PubMed  Google Scholar 

Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107. https://doi.org/10.1016/j.neuron.2015.12.001

Article  CAS  PubMed  Google Scholar 

Amunts K, Mohlberg H, Bludau S, Zilles K (2020) Julich-brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369:988–992

Article  ADS  CAS  PubMed  Google Scholar 

Aparicio-Rodríguez G, García-Cabezas MÁ (2023) Comparison of the predictive power of two models of cortico-cortical connections in primates: the distance rule model and the structural model. Cereb Cortex 33:8131–8149. https://doi.org/10.1093/cercor/bhad104

Article  PubMed  Google Scholar 

Armstrong E, Schleicher A, Omran H et al (1995) The ontogeny of human gyrification. Cereb Cortex 5:56–63. https://doi.org/10.1093/cercor/5.1.56

Article  CAS  PubMed  Google Scholar 

Arnatkeviciute A, Fulcher BD, Fornito A (2019) A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189:353–367. https://doi.org/10.1016/j.neuroimage.2019.01.011

Article  PubMed  Google Scholar 

Arnatkeviciute A, Fulcher BD, Bellgrove MA (2021a) Imaging transcriptomics of brain disorders. Psychiatry Global Open

Arnatkeviciute A, Fulcher BD, Bellgrove MA, Fornito A (2021b) Where the genome meets the connectome: understanding how genes shape human brain connectivity. Neuroimage 244:118570. https://doi.org/10.1016/j.neuroimage.2021.118570

Article  CAS  PubMed  Google Scholar 

Arnatkeviciute A, Fulcher BD, Oldham S et al (2021c) Genetic influences on hub connectivity of the human connectome. Nat Commun 12:4237

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Balaram P, Kaas JH (2014) Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front Neuroanat 8:81. https://doi.org/10.3389/fnana.2014.00081

Article  PubMed  PubMed Central  Google Scholar 

Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252:415–422. https://doi.org/10.1002/cne.902520310

Article  CAS  PubMed  Google Scholar 

Barbas H, García-Cabezas MÁ (2015) Motor cortex layer 4: less is more. Trends Neurosci 38:259–261. https://doi.org/10.1016/j.tins.2015.03.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7:635–646. https://doi.org/10.1093/cercor/7.7.635

Article  CAS  PubMed  Google Scholar 

Beul SF, Barbas H, Hilgetag CC (2017) A predictive structural model of the primate connectome. Sci Rep 7:43176. https://doi.org/10.1038/srep43176

Article  ADS  PubMed  PubMed Central  Google Scholar 

Bludau S, Mühleisen TW, Eickhoff SB et al (2018) Integration of transcriptomic and cytoarchitectonic data implicates a role for MAOA and TAC1 in the limbic-cortical network. Brain Struct Funct 223:2335–2342. https://doi.org/10.1007/s00429-018-1620-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth

Burt JB, Demirtaş M, Eckner WJ et al (2018) Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci 21:1251–1259. https://doi.org/10.1038/s41593-018-0195-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burt JB, Helmer M, Shinn M et al (2020) Generative modeling of brain maps with spatial autocorrelation. Neuroimage 220:117038. https://doi.org/10.1016/j.neuroimage.2020.117038

Article  PubMed  Google Scholar 

Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311. https://doi.org/10.1093/nar/gkp427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collins CE, Airey DC, Young NA et al (2010) Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci 107:15927–15932. https://doi.org/10.1073/pnas.1010356107

Article  ADS  PubMed  PubMed Central  Google Scholar 

Deco G, Kringelbach ML, Arnatkeviciute A et al (2021) Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. Sci Adv. https://doi.org/10.1126/sciadv.abf4752

Article  PubMed  PubMed Central  Google Scholar 

Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

Article  PubMed  Google Scholar 

Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207. https://doi.org/10.1006/nimg.1998.0396

Article  CAS  PubMed  Google Scholar 

Foit NA, Yung S, Lee HM et al (2022) A whole-brain 3D myeloarchitectonic atlas: mapping the Vogt-Vogt legacy to the cortical surface. Neuroimage 263:119617. https://doi.org/10.1016/j.neuroimage.2022.119617

Article  PubMed  Google Scholar 

Fornito A, Arnatkevičiūtė A, Fulcher BD (2019) Bridging the gap between connectome and transcriptome. Trends Cogn Sci 23:34–50. https://doi.org/10.1016/j.tics.2018.10.005

Article  PubMed  Google Scholar 

Fulcher BD, Murray JD, Zerbi V, Wang X-J (2019) Multimodal gradients across mouse cortex. Proc Natl Acad Sci U S A 116:4689–4695. https://doi.org/10.1073/pnas.1814144116

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

García-Cabezas MÁ, Barbas H (2014) Area 4 has layer IV in adult primates. Eur J Neurosci 39:1824–1834. https://doi.org/10.1111/ejn.12585

Article  PubMed  PubMed Central  Google Scholar 

García-Cabezas MÁ, Zikopoulos B, Barbas H (2019) The structural model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 224:985–1008. https://doi.org/10.1007/s00429-019-01841-9

Article  PubMed  PubMed Central  Google Scholar 

García-Cabezas MÁ, Pérez-Santos I, Cavada C (2023) Mapping the primate thalamus: historical perspective and modern approaches for defining nuclei. Brain Struct Funct 228:1125–1151. https://doi.org/10.1007/s00429-022-02598-4

Article  PubMed  PubMed Central  Google Scholar 

Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178. https://doi.org/10.1038/nature18933

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Glasser, Matthew F et al. (2013) The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80:105–24. https://doi.org/10.1016/j.neuroimage.2013.04.127

Gomez J, Zhen Z, Weiner KS (2019) Human visual cortex is organized along two genetically opposed hierarchical gradients with unique developmental and evolutionary origins. PLoS Biol 17:e3000362. https://doi.org/10.1371/journal.pbio.3000362

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez J, Zhen Z, Weiner KS (2021) The relationship between transcription and eccentricity in human V1. Brain Struct Funct 226:2807–2818. https://doi.org/10.1007/s00429-021-02387-5

Article  CAS  PubMed  Google Scholar 

Goulas A, Changeux J-P, Wagstyl K et al (2021) The natural axis of transmitter receptor distribution in the human cerebral cortex. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2020574118

Article  PubMed  PubMed Central  Google Scholar 

Le Gros Clark WE (1952) A note on cortical cyto-architectonics. In: Isocortex of Man. Brain 75:96–104

Gryglewski G, Seiger R, James GM et al (2018) Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage 176:259–267. https://doi.org/10.1016/j.neuroimage.2018.04.068

Article  CAS  PubMed  Google Scholar 

Gryglewski G, Murgaš M, Klöbl M et al (2022) Enrichment of disease-associated genes in cortical areas defined by transcriptome-based parcellation. Biol Psychiatry Cogn Neurosci Neuroimaging 7:10–23. https://doi.org/10.1016/j.bpsc.2021.02.012

Article  PubMed 

留言 (0)

沒有登入
gif