The role of cardiac microenvironment in cardiovascular diseases: implications for therapy

Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

Article  PubMed  PubMed Central  Google Scholar 

Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394:1145–58.

Article  PubMed  PubMed Central  Google Scholar 

Takeda N, Manabe I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam. 2011;2011: 535241.

PubMed  PubMed Central  Google Scholar 

Aggarwal M, Aggarwal B, Rao J. Integrative medicine for cardiovascular disease and prevention. Med Clin North Am. 2017;101:895–923.

Article  PubMed  Google Scholar 

Mishra S, Chatterjee S. Lactosylceramide promotes hypertrophy through ROS generation and activation of ERK1/2 in cardiomyocytes. Glycobiology. 2014;24:518–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu T, Wen H, Li H, et al. Oleic acid attenuates Ang II (Angiotensin II)-induced cardiac remodeling by inhibiting FGF23 (Fibroblast Growth Factor 23) expression in mice. Hypertension. 2020;75:680–92.

Article  CAS  PubMed  Google Scholar 

Gruver CL, DeMayo F, Goldstein MA, Means AR. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology. 1993;133:376–88.

Article  CAS  PubMed  Google Scholar 

Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473:326–35.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hirose K, Payumo AY, Cutie S, et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science. 2019;364:184–8.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Tang L, Zhao X, et al. Yap promotes noncanonical wnt signals from cardiomyocytes for heart regeneration. Circ Res. 2021;129:782–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frias MA, Pedretti S, Hacking D, et al. HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity. Atherosclerosis. 2013;228:110–6.

Article  CAS  PubMed  Google Scholar 

Shende P, Xu L, Morandi C, et al. Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovasc Res. 2016;109:103–14.

Article  CAS  PubMed  Google Scholar 

Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65:40–51.

Article  CAS  PubMed  Google Scholar 

Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol. 2020;82:63–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yokota T, McCourt J, Ma F, et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell. 2020;182:545-62.e23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivey MJ, Kuwabara JT, Riggsbee KL, Tallquist MD. Platelet-derived growth factor receptor-α is essential for cardiac fibroblast survival. Am J Physiol Heart Circ Physiol. 2019;317:H330–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang SW, Ihm SH, Choo EH, et al. Imatinib mesylate attenuates myocardial remodeling through inhibition of platelet-derived growth factor and transforming growth factor activation in a rat model of hypertension. Hypertension. 2014;63:1228–34.

Article  CAS  PubMed  Google Scholar 

Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6.

Article  CAS  PubMed  Google Scholar 

Nicin L, Wagner JUG, Luxán G, Dimmeler S. Fibroblast-mediated intercellular crosstalk in the healthy and diseased heart. FEBS Lett. 2022;596:638–54.

Article  CAS  PubMed  Google Scholar 

Stewart L, Turner NA. Channelling the force to reprogram the matrix: mechanosensitive ion channels in cardiac fibroblasts. Cells. 2021;10:990.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.

Article  CAS  PubMed  Google Scholar 

Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science. 2017;357:6353.

Article  Google Scholar 

Anbara T, Sharifi M, Aboutaleb N. Endothelial to mesenchymal transition in the cardiogenesis and cardiovascular diseases. Curr Cardiol Rev. 2020;16:306–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Duffhues G. García de Vinuesa A, van de Pol V, Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J Pathol. 2019;247:333–46.

Article  PubMed  PubMed Central  Google Scholar 

Yan F, Liu X, Ding H, Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022;124: 151833.

Article  CAS  PubMed  Google Scholar 

Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg. 2007;45:A25-32.

Article  PubMed  Google Scholar 

Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol. 2020;319:H613–31.

Article  CAS  PubMed  Google Scholar 

Mao C, Ma Z, Jia Y, et al. Nidogen-2 maintains the contractile phenotype of vascular smooth muscle cells and prevents neointima formation via bridging jagged1-notch3 signaling. Circulation. 2021;144:1244–61.

Article  CAS  PubMed  Google Scholar 

Wang L, Zheng J, Du Y, et al. Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ Res. 2010;106:514–25.

Article  CAS  PubMed  Google Scholar 

Cai Z, Xie N, Gong Z, et al. Activin receptor-like kinase 3 directly couples gαq (guanine nucleotide-binding protein subunit αq)/ gαq (guanine nucleotide-binding protein subunit α11) to regulate vascular contractility. Hypertension. 2023;80:1231–44.

Article  CAS  PubMed  Google Scholar 

Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

Article  CAS  PubMed  Google Scholar 

Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med. 2017;21:941–54.

Article  PubMed  Google Scholar 

Fukui S, Iwamoto N, Takatani A, et al. M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to osteoclastogenesis. Front Immunol. 2017;8:1958.

Article  PubMed  Google Scholar 

Zhang YH, He M, Wang Y, Liao AH. Modulators of the balance between M1 and M2 macrophages during PREGNANCY. Front Immunol. 2017;8:120.

PubMed  PubMed Central  Google Scholar 

Fujiu K, Nagai R. Fibroblast-mediated pathways in cardiac hypertrophy. J Mol Cell Cardiol. 2014;70:64–73.

Article  CAS  PubMed  Google Scholar 

Weber K T, Brilla C G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991 83 1849–65.

Butt RP, Laurent GJ, Bishop JE. Mechanical load and polypeptide growth factors stimulate cardiac fibroblast activity. Ann N Y Acad Sci. 1995;752:387–93.

Article  ADS  CAS 

留言 (0)

沒有登入
gif