The impact of DNA methylation on CTCF-mediated 3D genome organization

Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, 1–22 (2010).

Article  Google Scholar 

Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, 780–788 (2006).

Article  CAS  Google Scholar 

Lieberman-Aide, E. et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 236, 289–293 (2009).

Article  ADS  Google Scholar 

Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Briand, N. & Collas, P. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol. 21, 1–25 (2020).

Article  Google Scholar 

Van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735–3748 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

Article  ADS  CAS  PubMed  Google Scholar 

Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA 112, 4672–4677 (2015).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

Article  CAS  PubMed  Google Scholar 

Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

Article  CAS  PubMed  Google Scholar 

Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

Article  CAS  PubMed  Google Scholar 

Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fang, C. et al. CTCF binding facilitates oncogenic transcriptional dysregulation. Genome Biol. 21, 1–30 (2020).

Article  Google Scholar 

Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

Article  PubMed  Google Scholar 

Kim, Y. et al. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2020).

Article  ADS  Google Scholar 

Li, Y. et al. The structural basis for cohesin–CTCF-anchored loops. Nature 578, 472–476 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Arzate-Mejía, R. G., Recillas-Targa, F. & Corces, V. G. Developing in 3D: the role of CTCF in cell differentiation. Development 145, dev137729 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kubo, N. et al. Promoter–proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat. Struct. Mol. Biol. 28, 152–161 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore, J. M. et al. Loss of maternal CTCF is associated with peri-implantation lethality of CtCf null embryos. PLoS ONE 7, e34915 (2012).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kemp, C. J. et al. CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep. 7, 1020–1029 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451 (2019).

Article  CAS  PubMed  Google Scholar 

Barisic, D., Stadler, M. B., Iurlaro, M. & Schübeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto, H. et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol. Cell 66, 711–720 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakahashi, H. et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 3, 1678–1689 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

Article  ADS  CAS  PubMed  Google Scholar 

Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng, R. K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auclair, G., Guibert, S., Bender, A. & Weber, M. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 15, 545 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Oda, M. et al. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation. PLoS Genet. 9, 1–17 (2013).

Article  Google Scholar 

Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

Article  CAS  PubMed  Google Scholar 

Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 1–11 (1999).

Article  Google Scholar 

Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

Article  ADS  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif