Protein glycosylation in cardiovascular health and disease

Khoury, G. A., Baliban, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the Swiss-Prot database. Sci. Rep. 1, 90 (2011).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

Article  CAS  PubMed  Google Scholar 

Hart, G. W. & Copeland, R. J. Glycomics hits the big time. Cell 143, 672–676 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cummings, R. D. & Pierce, J. M. The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

Article  CAS  PubMed  Google Scholar 

Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

Article  CAS  PubMed  Google Scholar 

Bennett, H. S. Morphological aspects of extracellular polysaccharides. J. Hist. Cytochem. 11, 14–23 (1963).

Article  Google Scholar 

Cook, G. M. Glycoproteins in membranes. Biol. Rev. Camb. Philos. Soc. 43, 363–391 (1968).

Article  CAS  PubMed  Google Scholar 

Spiro, R. G. Glycoproteins: structure, metabolism and biology. N. Engl. J. Med. 269, 616–621 (1963).

Article  CAS  PubMed  Google Scholar 

Gee, D. J. A glycoprotein in cardiac conducting tissue. Br. Heart J. 31, 588–590 (1969).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langer, G. A., Frank, J. S., Nudd, L. M. & Seraydarian, K. Sialic acid: effect of removal on calcium exchangeability of cultured heart cells. Science 193, 1013–1015 (1976).

Article  ADS  CAS  PubMed  Google Scholar 

Frank, J. S., Langer, G. A., Nudd, L. M. & Seraydarian, K. The myocardial cell surface, its histochemistry, and the effect of sialic acid and calcium removal on its stucture and cellular ionic exchange. Circ. Res. 41, 702–714 (1977).

Article  CAS  PubMed  Google Scholar 

Varki, A. et al. (eds) Essentials of Glycobiology 4th edn (Cold Spring Harbor Laboratory Press, 2022).

Varki, A. & Kornfeld, S. in Essentials of Glycobiology 4th edn (Varki, A. et al. eds) 1–20 (Cold Spring Harbor Laboratory Press, 2022).

Haltiwanger, R. S. et al. in Essentials of Glycobiology 4th edn (Varki, A. et al. eds) 155–164 (Cold Spring Harbor Laboratory Press, 2022).

Minakata, S. et al. Protein C-mannosylation and C-mannosyl tryptophan in chemical biology and medicine. Molecules 26, 5258 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haynes, P. A. Phosphoglycosylation: a new structural class of glycosylation? Glycobiology 8, 1–5 (1998).

Article  CAS  PubMed  Google Scholar 

Maynard, J. C., Burlingame, A. L. & Medzihradszky, K. F. Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), a new post-translational modification in mammals. Mol. Cell Proteom. 15, 3405–3411 (2016).

Article  CAS  Google Scholar 

Stanley, P., Moremen, K. W., Lewis, N. E, Taniguchi, N. & Aebi, M. N-Glycans. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 103–116 (Cold Spring Harbor Laboratory Press, 2022).

Lewis, A. L., Chen X., Schnaar, R. L. & Varki, A. Sialic acids and other nonulosonic acids. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 185–204 (Cold Spring Harbor Laboratory Press, 2022).

Brockhausen, I., Wandall, H. H., Ten Hagen, K. G. & Stanley, P. O-GalNAc glycans. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 117–128 (Cold Spring Harbor Laboratory Press, 2022).

Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Merry, C. L. R., Lindahl, U, Couchman, J. & Esko, J. D. Proteoglycans and sulfated glycosaminoglycans. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) 217–232 (Cold Spring Harbor Laboratory Press, 2022).

Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christensen, G., Herum, K. M. & Lunde, I. G. Sweet, yet underappreciated: proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biol. 75-76, 286–299 (2019).

Article  CAS  PubMed  Google Scholar 

Frangogiannis, N. G. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 125, 117–146 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rienks, M., Papageorgiou, A. P., Frangogiannis, N. G. & Heymans, S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ. Res. 114, 872–888 (2014).

Article  CAS  PubMed  Google Scholar 

Zimmer, B. M., Barycki, J. J. & Simpson, M. A. Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars. Am. J. Physiol. Cell Physiol. 322, C1201–C1213 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caon, I. et al. Cell energy metabolism and hyaluronan synthesis. J. Histochem. Cytochem. 69, 35–47 (2021).

Article  CAS  PubMed  Google Scholar 

Torres, C. R. & Hart, G. W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984).

Article  CAS  PubMed  Google Scholar 

Holt, G. D. & Hart, G. W. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049–8057 (1986).

Article  CAS  PubMed  Google Scholar 

Chatham, J. C., Zhang, J. & Wende, A. R. Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology. Physiol. Rev. 101, 427–493 (2021).

Article  CAS  PubMed  Google Scholar 

Matsuura, A. et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J. Biol. Chem. 283, 35486–35495 (2008).

Article  CAS  PubMed  Google Scholar 

Ogawa, M. & Okajima, T. Structure and function of extracellular O-GlcNAc. Curr. Opin. Struct. Biol. 56, 72–77 (2019).

Article  CAS  PubMed  Google Scholar 

Ogawa, M., Senoo, Y., Ikeda, K., Takeuchi, H. & Okajima, T. Structural divergence in O-GlcNAc glycans displayed on epidermal growth factor-like repeats of mammalian notch1. Molecules 23, 1745 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Varshney, S. & Stanley, P. EOGT and O-GlcNAc on secreted and membrane proteins. Biochem. Soc. Trans. 45, 401–408 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaheen, R. et al. Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams–Oliver syndrome. Am. J. Hum. Genet. 92, 598–604 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, I. et al. Autosomal recessive Adams–Oliver syndrome caused by homozygous mutation in EOGT, encoding an EGF domain-specific O-GlcNAc transferase. Eur. J. Hum. Genet. 22, 374–378 (2014).

Article  CAS  PubMed  Google Scholar 

Sawaguchi, S. et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. Elife 6, e24419 (2017).

Article  PubMed  PubMed Central  Google Scholar 

DeHaven, J. E., Robinson, K. A., Nelson, B. A. & Buse, M. G. A novel variant of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle. Diabetes 50, 2419–2424 (2001).

Article  CAS  PubMed  Google Scholar 

Liu, K. et al. Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcine GFAT1 gene. Mol. Biol. Rep. 37, 2711–2717 (2010).

Article  CAS  PubMed  Google Scholar 

Wang, Z. V. et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179–1192 (2014).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif