JAK-STAT Signaling and Beyond in the Pathogenesis of Spondyloarthritis and Their Clinical Significance

Raychaudhuri S, Cheema KS, Raychaudhuri SK, Raychaudhuri SP. Janus kinase-signal transducers and activators of transcription cell signaling in spondyloarthritis: rationale and evidence for JAK inhibition. Curr Opin Rheumatol. 2021;33(4):348–55.

Article  CAS  PubMed  Google Scholar 

• Akkoc N, Khan MA. JAK inhibitors for axial spondyloarthritis: what does the future hold? Curr Rheumatol Rep. 2021;23(6):34. A comprehensive review on JAK inhibitors (JAKis) as a new therapeutic class for the treatment of axial spondyloarthritis.

Villarino AV, Gadina M, O’shea JJ, SnapShot Kanno Y. Jak-STAT signaling II. Cell. 2020;181(7):1696-1696.e1.

Article  CAS  PubMed  Google Scholar 

• Gadina M, Le MT, Schwartz DM, et al. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology (Oxford) 2019;58 (Suppl 1): i4-i16. An excellent review on JAK/STAT kinase system and its regulatory role on inflammatory diseases; as well as the prospects and challenges ahead in targeting JAKs.

Shah RJ, Raychaudhuri Banerjee S, S, Raychaudhuri SP. JAK-STAT inhibitors in immune mediated diseases: an overview. Indian J Dermatolo Venereol Leprol. 2023;89:691–9.

Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014;57:5023–38.

Article  CAS  PubMed  Google Scholar 

Kerschbaumer A, Smolen JS, Nash P, et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: a systematic literature research. RMD Open. 2020;6(3):e001374.

Article  PubMed  PubMed Central  Google Scholar 

Nash P, Kerschbaumer A, Dörner T, et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: a consensus statement. Ann Rheum Dis. 2021;80(1):71–87.

Article  CAS  PubMed  Google Scholar 

Damsky W, Peterson D, Ramseier J, Al-Bawardy B, Chun H, Proctor D, Strand V, Flavell RA, King B. The emerging role of Janus Kinase inhibitors in the treatment of autoimmune and inflammatory disease. J Allergy Clin Immunol. 2021;147(3):814–26.

Article  CAS  PubMed  Google Scholar 

Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine. 2016;79:45–51.

Article  CAS  PubMed  Google Scholar 

Chen C, Zhang X, Wang Y. Analysis of JAK2 and STAT3 polymorphisms in patients with ankylosing spondylitis in Chinese Han population. Clin Immunol. 2010;136:442–6.

Article  CAS  PubMed  Google Scholar 

•• Raychaudhuri SK, Abria C, Raychaudhuri SP. Regulatory role of the JAK STAT Kinase signaling system on the IL-23/IL-17 cytokine axis in psoriatic arthritis. Ann Rheum Dis. 2017;76(10):e36. A key article describing the functional significance of the JAK STAT kinase signaling system in the pathogenesis of psoriatic arthritis and its relevance for developing novel therapies for spondyloarthritis by targeting this kinase pathway.

Article  PubMed  Google Scholar 

Maeda Y, Huang T, Manning C, et al. Blockade of the JAK/STAT pathway inhibits inflammation and bone formation in two murine models of spondyloarthritis. Arthritis Rheumatol 2018; 70 (Suppl 10) 1

Gracey E, Hromadova D, Lim M, et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J Clin Invest. 2020;130:1863–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deodhar A, van der Heijde D, Sieper J, et al. Safety and efficacy of upadacitinib in patients with active ankylosing spondylitis and an inadequate response to nonsteroidal antiinflammatory drug therapy: one-year results of a double-blind, placebo-controlled study and open-label extension. Arthritis Rheumatol. 2022;74:70–80.

Article  CAS  PubMed  Google Scholar 

Deodhar A, Van den Bosch F, Poddubnyy D, et al. Upadacitinib for the treatment of active non-radiographic axial spondyloarthritis (SELECT-AXIS 2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2022;400:369–79.

Article  CAS  PubMed  Google Scholar 

Baraliakos X, van der Heijde D, Sieper J, et al. Efficacy and safety of upadacitinib in patients with ankylosing spondylitis refractory to biologic therapy: 1-year results from the open-label extension of a phase III study. Arthritis Res Ther. 2023Sep 18;25(1):172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deodhar A, Sliwinska-Stanczyk P, Xu H, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2021Aug;80(8):1004–13.

Article  CAS  PubMed  Google Scholar 

van der Heijde D, Baraliakos X, Gensler LS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392:2378–87.

Article  PubMed  Google Scholar 

•• Sepriano A, Kerschbaumer A, Smolen JS, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 2020;79:760–70. This article provides a systematic literature review (SLR) about the safety of synthetic (s) including JAKi and biologics (b) disease-modifying anti-rheumatic dugs (DMARDs).

Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis. 2017;76:1253–62.

Article  CAS  PubMed  Google Scholar 

Genovese MC, Smolen J, Takeuchi T, et al. FRI0123: safety profile of baricitinib for the treatment of rheumatoid arthritis up to 8.4 years: an updated integrated safety analysis. Ann Rheum Dis. 2020;79(Suppl 1):638.

Article  Google Scholar 

Cohen SB, van Vollenhoven R, Curtis JR, et al. THU0187: safety profile of upadacitinib up to 3 years of exposure in patients with rheumatoid arthritis. Ann Rheum Dis. 2020;79(Suppl. 1):315.

Google Scholar 

Curtis JR, Xie F, Yun H, et al. Real world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1843.

Article  CAS  PubMed  Google Scholar 

Winthrop KL, Curtis JR, Lindsey S, et al. Herpes zoster and tofacitinib: clinical outcomes and the risk of concomitant therapy. Arthritis Rheumatol. 2017;69:1960.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wollenhaupt J, Lee EB, Curtis JR, et al. Safety and efficacy of tofacitinib for up to 9.5 years in the treatment of rheumatoid arthritis: final results of a global, open-label, long-term extension study. Arthritis Res Ther. 2019;21:89.

Article  PubMed  PubMed Central  Google Scholar 

Winthrop KL, Yamanaka H, Valdez H, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66:2675.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curtis JR, Xie F, Yang S, et al. Risk for herpes zoster in tofacitinib-treated glucocorticoids. Arthritis Care Res. 2019;71:1249–54.

Article  CAS  Google Scholar 

Desai RJ, Pawar A, Weinblatt ME, et al. Comparative risk of venous thromboembolism in rheumatoid arthritis patients receiving tofacitinib versus those receiving tumor necrosis factor inhibitors: an observational cohort study. Arthritis Rheumatol. 2019;71:892–900.

Article  CAS  PubMed  Google Scholar 

Ytterberg SR, Bhatt DL, Mikuls TR, ORAL Surveillance Investigators, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–26.

Hromadová D, Elewaut D, Inman RD, et al. From science to success? Targeting tyrosine kinase 2 in spondyloarthritis and related chronic inflammatory diseases. Front Genet. 2021;5(12):685280.

Article  Google Scholar 

•• Gonciarz M, Pawlak-Buś K, Leszczyński P, Owczarek W. TYK2 as a therapeutic target in the treatment of autoimmune and inflammatory diseases. Immunotherapy.  2021;3(13):1135–1150. Here the authors review the evidence for targeting TYK2 as a more specific approach to treating these conditions. TYK2 inhibitors are clinically effective in autoimmune and inflammatory diseases and may avoid some of the complications reported with nonselective JAK inhibitors.

Papp K, Gordon K, Thaçi D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379:1313–21.

Article  CAS  PubMed  Google Scholar 

Raychaudhuri SP, Raychaudhuri SK, et al. Nerve growth factor: a key local regulator in the pathogenesis of inflammatory arthritis. Arthritis Rheum. 2011;63(11):3243–52.

Article  CAS  PubMed  Google Scholar 

Tive L, Bello AE, Radin D, et al. Pooled analysis of tanezumab efficacy and safety with subgroup analyses of phase III clinical trials in patients with osteoarthritis pain of the knee or hip. J Pain Res. 2019;12:975–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Datta-Mitra A, Kundu-Raychaudhuri S, Mitra A, et al. Cross talk between neuroregulatory molecule and monocyte: nerve growth factor activates the inflammasome. PLoS ONE. 2015Apr 15;10(4):e0121626.

Article  PubMed  PubMed Central  Google Scholar 

C. Buerger. Epidermal mTORC1 signaling contributes to the pathogenesis of psoriasis and could serve as a therapeutic target. Front. Immunol. 2018: 9(2786).

Raychaudhuri SK, Raychaudhuri SP. mTOR signaling cascade in psoriatic disease: double kinase mTOR inhibitor a novel therapeutic target. Indian J Dermatol. 2014;59(1):67–70.

Article  PubMed  PubMed Central  Google Scholar 

Chen S, van Tok MN, Knaup VL, et al. mTOR blockade by rapamycin in SpA: impact on inflammation and new bone formation in vitro and in vivo. Front Immunol. 2020;27(10):2344.

Article  Google Scholar 

Pandya VB, Kumar S, Sachchidanand, et al. Combating autoimmune diseases with retinoic acid receptor-related orphan receptor-γ (RORγ or RORc) inhibitors: hits and misses. J Med Chem. 2018;61(24):10976–95.

Guendisch U, Weiss J, Ecoeur F, et al. Pharmacological inhibition of RORγt suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS ONE. 2017;12(11):e0188391.

Article  PubMed  PubMed Central  Google Scholar 

Gege C. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from vitae pharmaceuticals: patent evaluation of WO2016061160 and US20160122345. Expert Opin Ther Pat. 2017;27(1):1–8.

Article  CAS  PubMed  Google Scholar 

Liu X, Lee YS, Yu CR, Egwuagu CE. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J Immunol. 2008;180(9):6070–6.

Article  CAS  PubMed  Google Scholar 

Liang Y, Pan HF, Ye DQ. Therapeutic potential of STAT4 in autoimmunity. Expert Opin Ther Targets. 2014;18(8):945–60.

留言 (0)

沒有登入
gif