Aptamers as an approach to targeted cancer therapy

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

Soldevilla MM, Villanueva H, Pastor F. Aptamers: a feasible technology in cancer immunotherapy. J Immunol Res. 2016;2016:1083738.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng J, Li B, Ying J, Pan W, Liu C, Luo T, et al. Liquid biopsy: application in early diagnosis and monitoring of cancer. Small Struct. 2020;1(3):2000063.

Article  Google Scholar 

Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018;22(12):3855–64.

PubMed  Google Scholar 

He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol. 2023;238: 124173.

Article  CAS  PubMed  Google Scholar 

Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol. 2006;2(2):57–66.

CAS  Google Scholar 

Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: mechanisms, research progresses, challenges, and opportunities. J Cell Physiol. 2022;237(1):346–72.

Article  CAS  PubMed  Google Scholar 

Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15(24):7471–8.

Article  CAS  PubMed  Google Scholar 

Yadav P, Ambudkar SV, Rajendra PN. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol. 2022;20(1):1–35.

Article  Google Scholar 

Lorscheider M, Gaudin A, Nakhle J, Veiman KL, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv. 2021;12(1):55–76.

Article  CAS  PubMed  Google Scholar 

Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52(1):17–35.

Article  CAS  PubMed  Google Scholar 

Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eriksson ESE, Joshi L, Billeter M, Eriksson LA. De novo tertiary structure prediction using RNA123—benchmarking and application to Macugen. J Mol Model. 2014;20(8):2389.

Article  PubMed  Google Scholar 

Mehta J, Van Dorst B, Rouah-Martin E, Herrebout W, Scippo M-L, Blust R, et al. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol. J Biotechnol. 2011;155(4):361–9.

Article  CAS  PubMed  Google Scholar 

Kong HY, Byun J. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther. 2013;21(6):423.

Article  Google Scholar 

Hayashi T, Oshima H, Mashima T, Nagata T, Katahira M, Kinoshita M. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Res. 2014;42(11):6861–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci. 2023;14(19):4961–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.

Article  CAS  PubMed  Google Scholar 

Reverdatto S, Burz DS, Shekhtman A. Peptide aptamers: development and applications. Curr Top Med Chem. 2015;15(12):1082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl. 2012;6(11–12):563–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005;56:555–83.

Article  CAS  PubMed  Google Scholar 

Constantinou A, Chen C, Deonarain M. Modulating the pharmacokinetics of therapeutic antibodies. Biotech Lett. 2010;32:609–22.

Article  CAS  Google Scholar 

Sharifi J, Khawli L, Hornick J, Epstein A. Improving monoclonal antibody pharmacokinetics via chemical modification. Q J Nucl Med Mol Imaging. 1998;42(4):242.

CAS  Google Scholar 

Stoltenburg R, Reinemann C, Strehlitz B. SELEX—A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403.

Article  CAS  PubMed  Google Scholar 

Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, et al. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng. 2020;14:1–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, et al. Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci. 2017;18(10):2142.

Article  PubMed  PubMed Central  Google Scholar 

Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and applications of in silico aptamer design and modeling. Int J Mol Sci. 2020;21(22):8420.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev. 2018;134:65–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Bing T, Wang R, Jin S, Shangguan D, Chen H. Cell-SELEX-based selection of ssDNA aptamers for specifically targeting BRAF V600E-mutated melanoma. Analyst. 2022;147(1):187–95.

Article  ADS  CAS  Google Scholar 

Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, et al. Computational tools for aptamer identification and optimization. TrAC, Trends Anal Chem. 2022;157: 116767.

Article  CAS  Google Scholar 

Zhang N, Chen Z, Liu D, Jiang H, Zhang Z-K, Lu A, et al. Structural biology for the molecular insight between aptamers and target proteins. Int J Mol Sci. 2021;22(8):4093.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Musafia B, Oren-Banaroya R, Noiman S. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction. PLoS ONE. 2014;9(5): e97696.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Li X, Chung LW, Li G. Multiscale simulations on spectral tuning and the photoisomerization mechanism in fluorescent RNA spinach. J Chem Theory Comput. 2016;12(11):5453–64.

Article  CAS  PubMed  Google Scholar 

Hoinka J, Przytycka T. AptaPLEX – a dedicated, multithreaded demultiplexer for HT-SELEX data. Methods. 2016;106:82–5.

Article  CAS  PubMed  Google Scholar 

Hoinka J, Zotenko E, Friedman A, Sauna ZE, Przytycka TM. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers. Bioinformatics. 2012;28(12):i215–23.

Article  PubMed  PubMed Central  Google Scholar 

Thiel WH, Giangrande PH. Analyzing HT-SELEX data with the Galaxy Project tools – a web based bioinformatics platform for biomedical research. Methods. 2016;97:3–10.

Article  CAS  PubMed  Google Scholar 

Thiel WH. Galaxy workflows for web-based bioinformatics analysis of aptamer high-throughput sequencing data. Mol Ther Nucleic Acids. 2016;5: e345.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Shieh KR, Kratschmer C, Maier KE, Greally JM, Levy M, Golden A. AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX. Bioinformatics. 2020;36(9):2905–6.

Article  CAS 

留言 (0)

沒有登入
gif