Predictors of augmented renal clearance based on iohexol plasma clearance in critically ill children

Rhoney DH, Metzger SA, Nelson NR (2021) Scoping review of augmented renal clearance in critically ill pediatric patients. Pharmacotherapy 41:851–863

Article  PubMed  Google Scholar 

Dhont E, Van Der Heggen T, De Jaeger A, Vande Walle J, De Paepe P, De Cock PA (2020) Augmented renal clearance in pediatric intensive care: are we undertreating our sickest patients? Pediatr Nephrol 35:25–39

Article  PubMed  Google Scholar 

Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots RJ, Lipman J (2014) Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med 42:520–527

Article  CAS  PubMed  Google Scholar 

De Cock PA, Standing JF, Barker CI, de Jaeger A, Dhont E, Carlier M, Verstraete AG, Delanghe JR, Robays H, De Paepe P (2015) Augmented renal clearance implies a need for increased amoxicillin-clavulanic acid dosing in critically ill children. Antimicrob Agents Chemother 59:7027–7035

Article  PubMed  PubMed Central  Google Scholar 

Avedissian SN, Rhodes NJ, Kim Y, Bradley J, Valdez JL, Le J (2020) Augmented renal clearance of aminoglycosides using population-based pharmacokinetic modelling with Bayesian estimation in the paediatric ICU. J Antimicrob Chemother 75:162–169

CAS  PubMed  Google Scholar 

Van Der Heggen T, Dhont E, Willems J, Herck I, Delanghe JR, Stove V, Verstraete AG, Vanhaesebrouck S, De Paepe P, De Cock P (2022) Suboptimal beta-lactam therapy in critically ill children: risk factors and outcome. Pediatr Crit Care Med 23:e309–e318

Article  PubMed  Google Scholar 

Scully PT, Lam WM, Coronado Munoz AJ, Modem VM (2022) Augmented renal clearance of vancomycin in suspected sepsis: single-center, retrospective pediatric cohort. Pediatr Crit Care Med 23:444–452

Article  PubMed  Google Scholar 

Van Der Heggen T, Dhont E, Peperstraete H, Delanghe JR, Vande Walle J, De Paepe P, De Cock PA (2019) Augmented renal clearance: a common condition in critically ill children. Pediatr Nephrol 34:1099–1106

Article  PubMed  Google Scholar 

Baptista JP, Neves M, Rodrigues L, Teixeira L, Pinho J, Pimentel J (2014) Accuracy of the estimation of glomerular filtration rate within a population of critically ill patients. J Nephrol 27:403–410

Article  CAS  PubMed  Google Scholar 

André P, Chtioui H, Dao K, Rothuizen LE, Di Paolo ER, Diezi M, Crisinel PA, Cachat F, Chehade H, Buclin T (2023) Estimating glomerular filtration rate from serum creatinine concentration in children with augmented renal clearance: all formulas are equivocal, but some are more equivocal than others. Kidney Int 103:225–226

Article  PubMed  Google Scholar 

Dhont E, Windels C, Snauwaert E, Van Der Heggen T, de Jaeger A, Dhondt L, Delanghe J, Croubels S, Walle JV, De Paepe P, De Cock PA (2022) Reliability of glomerular filtration rate estimating formulas compared to iohexol plasma clearance in critically ill children. Eur J Pediatr 181:3851–3866

Article  CAS  PubMed  Google Scholar 

Dixon JJ, Lane K, Dalton RN, Turner C, MacPhee IAM, Chis Ster I, Philips BJ (2018) Continuous infusion of low-dose iohexol measures changing glomerular filtration rate in critically ill patients. Crit Care Med 46:e190–e197

Article  CAS  PubMed  Google Scholar 

Erley CM, Bader BD, Berger ED, Vochazer A, Jorzik JJ, Dietz K, Risler T (2001) Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med 29:1544–1550

Article  CAS  PubMed  Google Scholar 

Salmon Gandonniere C, Helms J, Le Tilly O, Benz-de Bretagne I, Bretagnol A, Bodet-Contentin L, Mercier E, Halimi JM, Benzekri-Lefevre D, Meziani F, Barin-Le Guellec C, Ehrmann S, Clinical research in intensive care and sepsis - TRIal group for global evaluation and research in SEPsis (CRICS-TriggerSep) network (2019) glomerular hyper- and hypofiltration during acute circulatory failure: iohexol-based gold-standard descriptive study. Crit Care Med 47:e623–e629

Article  CAS  PubMed  Google Scholar 

Sangla F, Marti PE, Verissimo T, Pugin J, de Seigneux S, Legouis D (2020) Measured and estimated glomerular filtration rate in the ICU: a prospective study. Crit Care Med 48:e1232–e1241

Article  CAS  PubMed  Google Scholar 

Smeets NJL, Teunissen EMM, van der Velden K, van der Burgh MJP, Linders DE, Teesselink E, Moes DAR, Tøndel C, Ter Heine R, van Heijst A, Schreuder MF, de Wildt SN (2023) Glomerular filtration rate in critically ill neonates and children: creatinine-based estimations versus iohexol-based measurements. Pediatr Nephrol 38:1087–1097

Article  PubMed  Google Scholar 

Bilbao-Meseguer I, Rodriguez-Gascon A, Barrasa H, Isla A, Solinis MA (2018) Augmented renal clearance in critically ill patients: a systematic review. Clin Pharmacokinet 57:1107–1121

Article  CAS  PubMed  Google Scholar 

Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J (2013) Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care 17:R35

Article  PubMed  PubMed Central  Google Scholar 

Barletta JF, Mangram AJ, Byrne M, Sucher JF, Hollingworth AK, Ali-Osman FR, Shirah GR, Haley M, Dzandu JK (2017) Identifying augmented renal clearance in trauma patients: validation of the augmented renal clearance in trauma intensive care scoring system. J Trauma Acute Care Surg 82:665–671

Article  PubMed  Google Scholar 

Hefny F, Stuart A, Kung JY, Mahmoud SH (2022) Prevalence and risk factors of augmented renal clearance: a systematic review and meta-analysis. Pharmaceutics 14(2):445

Article  PubMed  PubMed Central  Google Scholar 

Hirai K, Ihara S, Kinae A, Ikegaya K, Suzuki M, Hirano K, Itoh K (2016) Augmented renal clearance in pediatric patients with febrile neutropenia associated with vancomycin clearance. Ther Drug Monit 38:393–397

Article  CAS  PubMed  Google Scholar 

Lee B, Kim J, Park JD, Kang HM, Cho YS, Kim KS (2017) Predicting augmented renal clearance using estimated glomerular filtration rate in critically ill children. Clin Nephrol 88:148–155

Article  CAS  PubMed  Google Scholar 

Adeli K, Higgins V, Trajcevski K, White-Al Habeeb N (2017) The Canadian laboratory initiative on pediatric reference intervals: a CALIPER white paper. Crit Rev Clin Lab Sci 54:358–413

Article  PubMed  Google Scholar 

Pottel H, Vrydags N, Mahieu B, Vandewynckele E, Croes K, Martens F (2008) Establishing age/sex related serum creatinine reference intervals from hospital laboratory data based on different statistical methods. Clin Chim Acta 396:49–55

Article  CAS  PubMed  Google Scholar 

Ceriotti F, Boyd JC, Klein G, Henny J, Queraltó J, Kairisto V, Panteghini M (2008) Reference intervals for serum creatinine concentrations: assessment of available data for global application. Clin Chem 54:559–566

Article  CAS  PubMed  Google Scholar 

Dhondt L, Croubels S, De Cock P, De Paepe P, De Baere S, Devreese M (2019) Development and validation of an ultra-high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of iohexol, p-aminohippuric acid and creatinine in porcine and broiler chicken plasma. J Chromatogr B Analyt Technol Biomed Life Sci 1117:77–85

Article  CAS  PubMed  Google Scholar 

Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311 (discussion 312-303)

PubMed  Google Scholar 

Piepsz A, Tondeur M, Ham H (2006) Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging 33:1477–1482

Article  CAS  PubMed  Google Scholar 

Pierce CB, Muñoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ (2021) Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int 99:948–956

Article  CAS  PubMed  Google Scholar 

Dhont E, Vanderheggen T, Decock PA (2022) Reply to commenting letter for “Reliability of glomerular filtration rate estimating formulas compared to iohexol plasma clearance in critically ill children” by Smeets et al. Eur J Pediatr 181:4229–4230

Article  CAS  PubMed  Google Scholar 

Cies J, Betancourt N, Bar A, Moore W, Chopra A (2020) 1430: Augmented renal clearance in the pediatric intensive care unit. Crit Care Med 48:692

Article  Google Scholar 

Abdel El Naeem HEM, Abdelhamid MHE, Atteya DAM (2017) Impact of augmented renal clearance on enoxaparin therapy in critically ill patients. Egypt J Anaesth 33:113–117

Article  Google Scholar 

Barletta JF, Mangram AJ, Byrne M, Hollingworth AK, Sucher JF, Ali-Osman FR, Shirah GR, Dzandu JK (2016) The importance of empiric antibiotic dosing in critically ill trauma patients: are we under-dosing based on augmented renal clearance and inaccurate renal clearance estimates? J Trauma Acute Care Surg 81:1115–1121

Article  CAS  PubMed  Google Scholar 

Lin Wu FL, Liu SS, Yang TY, Win MF, Lin SW, Huang CF, Wang KC, Shen LJ (2015) A larger dose of vancomycin is required in adult neurosurgical intensive care unit patients due to augmented clearance. Ther Drug Monit 37:609–618

Article  CAS  PubMed  Google Scholar 

Akers KS, Niece KL, Chung KK, Cannon JW, Cota JM, Murray CK (2014) Modified augmented renal clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients. J Trauma Acute Care Surg 77:S163-170

Article  PubMed  Google Scholar 

Park SK, Hur M, Kim E, Kim WH, Park JB, Kim Y, Yang JH, Jun TG, Kim CS (2016) Risk factors for acute kidney injury after congenital cardiac surgery in infants and children: a retrospective observational study. Plos One 11:e0166328

Article  PubMed

留言 (0)

沒有登入
gif