Precise and scalable self-organization in mammalian pseudo-embryos

Conklin, E. Organ-forming substances in the eggs of ascidians. Biol. Bull. 8, 205–230 (1905).

Article  Google Scholar 

Kirschner, M. & Gerhart, J. Cells, Embryos and Evolution (Blackwell Science, 1997).

Houchmandzadeh, B., Wieschaus, E. & Leibler, S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002).

Article  ADS  CAS  PubMed  Google Scholar 

Arias, A. M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

Article  CAS  PubMed  Google Scholar 

Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142, 3996–4009 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

Article  CAS  PubMed  Google Scholar 

Bollenbach, T. et al. Precision of the Dpp gradient. Development 135, 1137–1146 (2008).

Article  CAS  PubMed  Google Scholar 

Bier, E. & De Robertis, E. M. Embryo development. BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science 348, aaa5838 (2015).

Article  PubMed  Google Scholar 

Bentovim, L., Harden, T. T. & DePace, A. H. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development https://doi.org/10.1242/dev.146563 (2017).

Zagorski, M. et al. Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science 356, 1379–1383 (2017).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Guignard, L. et al. Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science 369, eaar5663 (2020).

Article  CAS  PubMed  Google Scholar 

Waddington, C. H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942).

Article  ADS  Google Scholar 

Kicheva, A. et al. Coordination of progenitor specification and growth in mouse and chick spinal cord. Science 345, 1254927 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Tsai, T. Y.-C. et al. An adhesion code ensures robust pattern formation during tissue morphogenesis. Science 370, 113–116 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Petkova, M. D., Little, S. C., Liu, F. & Gregor, T. Maternal origins of developmental reproducibility. Curr. Biol. 24, 1283–1288 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Driever, W. & Nüsslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 138–143 (1988).

Google Scholar 

Petkova, M. D., Tkacik, G., Bialek, W., Wieschaus, E. F. & Gregor, T. Optimal decoding of cellular identities in a genetic network. Cell 176, 844–855.e15 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregor, T., Tank, D. W., Wieschaus, E. F. & Bialek, W. Probing the limits to positional information. Cell 130, 153–164 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubuis, J. O., Tkacik, G., Wieschaus, E. F., Gregor, T. & Bialek, W. Positional information, in bits. Proc. Natl Acad. Sci. USA 110, 16301–16308 (2013).

Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Lacalli, T. C. Patterning, from conifers to consciousness: Turing’s theory and order from fluctuations. Front. Cell Dev. Biol. 10, 871950 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Nikolić, M. et al. Scale invariance in early embryonic development. Preprint at https://doi.org/10.48550/arXiv.2312.17684 (2023).

Ishimatsu, K. et al. Size-reduced embryos reveal a gradient scaling based mechanism for zebrafish somite formation. Development https://doi.org/10.1242/dev.161257 (2018).

Uygur, A. et al. Scaling pattern to variations in size during development of the vertebrate neural tube. Dev. Cell 37, 127–135 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almuedo-Castillo, M. et al. Scale-invariant patterning by size-dependent inhibition of nodal signalling. Nat. Cell Biol. 20, 1032–1042 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leibovich, A., Edri, T., Klein, S. L., Moody, S. A. & Fainsod, A. Natural size variation among embryos leads to the corresponding scaling in gene expression. Dev. Biol. 462, 165–179 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al Asafen, H. et al. Robustness of the dorsal morphogen gradient with respect to morphogen dosage. PLoS Comput. Biol. 16, e1007750 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung, D., Miles, C., Kreitman, M. & Ma, J. Scaling of the Bicoid morphogen gradient by a volume-dependent production rate. Development 138, 2741–2749 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben-Zvi, D., Shilo, B.-Z. & Barkai, N. Scaling of morphogen gradients. Curr. Opin. Genet. Dev. 21, 704–710 (2011).

Article  CAS  PubMed  Google Scholar 

Huang, A., Rupprecht, J.-F. & Saunders, T. E. Embryonic geometry underlies phenotypic variation in decanalized conditions. eLife 9, e47380 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romanova-Michaelides, M. et al. Morphogen gradient scaling by recycling of intracellular Dpp. Nature 602, 287–293 (2022).

Article  ADS  CAS  PubMed  Google Scholar 

Saiz, N. & Hadjantonakis, A.-K. Coordination between patterning and morphogenesis ensures robustness during mouse development. Philos. Trans. R. Soc. B 375, 20190562 (2020).

Article  CAS  Google Scholar 

Stückemann, T. et al. Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians. Dev. Cell 40, 248–263.e4 (2017).

Article  PubMed  Google Scholar 

Gritti, N., Oriola, D. & Trivedi, V. Rethinking embryology in vitro: a synergy between engineering, data science and theory. Dev. Biol. 474, 48–61 (2021).

Article  CAS  PubMed  Google Scholar 

Rosado-Olivieri, E. A. & Brivanlou, A. H. Synthetic by design: exploiting tissue self-organization to explore early human embryology. Dev. Biol. 474, 16–21 (2021).

Article  CAS  PubMed  Google Scholar 

van den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development https://doi.org/10.1242/dev.113001 (2014).

Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).

Article  ADS  CAS  PubMed  Google Scholar 

Hashmi, A. et al. Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids. eLife 11, e59371 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Underhill, E. J. & Toettcher, J. E. Control of gastruloid patterning and morphogenesis by the Erk and Akt signaling pathways. Development 150, dev201663 (2023).

Article  CAS  PubMed  Google Scholar 

Fu, J., Warmflash, A. & Lutolf, M. P. Stem-cell-based embryo models for fundamental research and translation. Nat. Mater. 20, 132–144 (2021).

Article  ADS  PubMed  Google Scholar 

Beccari, L. et al. Generating gastruloids from mouse embryonic stem cells. Protoc. Exch. https://doi.org/10.1038/protex.2018.094 (2018).

Snow, M. H. & Tam, P. P. Is compensatory growth a complicating factor in mouse teratology? Nature 279, 555–557 (1979).

Article  ADS  CAS  PubMed 

留言 (0)

沒有登入
gif