A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α–primase

Nethanel, T., Reisfeld, S., Dinter-Gottlieb, G. & Kaufmann, G. An Okazaki piece of simian virus 40 may be synthesized by ligation of shorter precursor chains. J. Virol. 62, 2867–2873 (1988).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bullock, P. A., Seo, Y. S. & Hurwitz, J. Initiation of simian virus 40 DNA synthesis in vitro. Mol. Cell. Biol. 11, 2350–2361 (1991).

CAS  PubMed  PubMed Central  Google Scholar 

Eki, T., Matsumoto, T., Murakami, Y. & Hurwitz, J. The replication of DNA containing the simian virus 40 origin by the monopolymerase and dipolymerase systems. J. Biol. Chem. 267, 7284–7294 (1992).

Article  CAS  PubMed  Google Scholar 

Garg, P. & Burgers, P. M. DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol. 40, 115–128 (2005).

Article  CAS  PubMed  Google Scholar 

Stodola, J. L. & Burgers, P. M. Mechanism of lagging-strand DNA replication in eukaryotes. Adv. Exp. Med. Biol. 1042, 117–133 (2017).

Article  CAS  PubMed  Google Scholar 

Fukuda, M., Taguchi, T. & Ohashi, M. Age-dependent changes in DNA polymerase fidelity and proofreading activity during cellular aging. Mech. Ageing Dev. 109, 141–151 (1999).

Article  CAS  PubMed  Google Scholar 

Levy, N. et al. XRCC1 interacts with the p58 subunit of DNA pol α-primase and may coordinate DNA repair and replication during S phase. Nucleic Acids Res. 37, 3177–3188 (2009).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Srivastava, V. K. & Busbee, D. L. Replicative enzymes and ageing: importance of DNA polymerase alpha function to the events of cellular ageing. Ageing Res. Rev. 1, 443–463 (2002).

Article  CAS  PubMed  Google Scholar 

Taricani, L., Shanahan, F. & Parry, D. Replication stress activates DNA polymerase alpha-associated Chk1. Cell Cycle 8, 482–489 (2009).

Article  CAS  PubMed  Google Scholar 

Yan, S. & Michael, W. M. TopBP1 and DNA polymerase alpha-mediated recruitment of the 9–1–1 complex to stalled replication forks: implications for a replication restart-based mechanism for ATR checkpoint activation. Cell Cycle 8, 2877–2884 (2009).

Article  CAS  PubMed  Google Scholar 

Kuchta, R. D., Reid, B. & Chang, L. M. DNA primase. Processivity and the primase to polymerase α activity switch. J. Biol. Chem. 265, 16158–16165 (1990).

Article  CAS  PubMed  Google Scholar 

Sheaff, R. J. & Kuchta, R. D. Mechanism of calf thymus DNA primase: slow initiation, rapid polymerization, and intelligent termination. Biochemistry 32, 3027–3037 (1993).

Article  CAS  PubMed  Google Scholar 

Thomas, D. C. et al. Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 30, 11751–11759 (1991).

Article  CAS  PubMed  Google Scholar 

Maga, G. et al. Okazaki fragment processing: modulation of the strand displacement activity of DNA polymerase δ by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1. Proc. Natl Acad. Sci. USA 98, 14298–14303 (2001).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Pavlov, Y. I. et al. Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ. Curr. Biol. 16, 202–207 (2006).

Article  CAS  PubMed  Google Scholar 

Rossi, M. L. & Bambara, R. A. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. J. Biol. Chem. 281, 26051–26061 (2006).

Article  CAS  PubMed  Google Scholar 

Stith, C. M., Sterling, J., Resnick, M. A., Gordenin, D. A. & Burgers, P. M. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem. 283, 34129–34140 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams, J. S. & Kunkel, T. A. Ribonucleotides in DNA: origins, repair and consequences. DNA Repair 19, 27–37 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pellegrini, L. The pol α–primase complex. Subcell. Biochem. 62, 157–169 (2012).

Article  CAS  PubMed  Google Scholar 

Zerbe, L. K. & Kuchta, R. D. The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 41, 4891–4900 (2002).

Article  CAS  PubMed  Google Scholar 

Lao-Sirieix, S. H., Nookala, R. K., Roversi, P., Bell, S. D. & Pellegrini, L. Structure of the heterodimeric core primase. Nat. Struct. Mol. Biol. 12, 1137–1144 (2005).

Article  CAS  PubMed  Google Scholar 

Vaithiyalingam, S., Warren, E. M., Eichman, B. F. & Chazin, W. J. Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase. Proc. Natl Acad. Sci. USA 107, 13684–13689 (2010).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sauguet, L., Klinge, S., Perera, R. L., Maman, J. D. & Pellegrini, L. Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase. PLoS ONE 5, e10083 (2010).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Agarkar, V. B., Babayeva, N. D., Pavlov, Y. I. & Tahirov, T. H. Crystal structure of the C-terminal domain of human DNA primase large subunit: implications for the mechanism of the primase-polymerase α switch. Cell Cycle 10, 926–931 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunez-Ramirez, R. et al. Flexible tethering of primase and DNA pol α in the eukaryotic primosome. Nucleic Acids Res. 39, 8187–8199 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilkenny, M. L., Longo, M. A., Perera, R. L. & Pellegrini, L. Structures of human primase reveal design of nucleotide elongation site and mode of pol α tethering. Proc. Natl Acad. Sci. USA 110, 15961–15966 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Vaithiyalingam, S. et al. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase. J. Mol. Biol. 426, 558–569 (2014).

Article  CAS  PubMed  Google Scholar 

Baranovskiy, A. G. et al. Crystal structure of the human primase. J. Biol. Chem. 290, 5635–5646 (2015).

Article  CAS  PubMed  Google Scholar 

Klinge, S., Nunez-Ramirez, R., Llorca, O. & Pellegrini, L. 3D architecture of DNA pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J. 28, 1978–1987 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilkenny, M. L., De Piccoli, G., Perera, R. L., Labib, K. & Pellegrini, L. A conserved motif in the C-terminal tail of DNA polymerase α tethers primase to the eukaryotic replisome. J. Biol. Chem. 287, 23740–23747 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perera, R. L. et al. Mechanism for priming DNA synthesis by yeast DNA polymerase α. eLife 2, e00482 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Attali, I., Botchan, M. R. & Berger, J. M. Structural mechanisms for replicating DNA in eukaryotes. Annu. Rev. Biochem. 90, 77–106 (2021).

Article  CAS  PubMed  Google Scholar 

Baranovskiy, A. G. et al. Mechanism of concerted RNA–DNA primer synthesis by the human primosome. J. Biol. Chem. 291, 10006–10020 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilkenny, M. L. et al. Structural basis for the interaction of SARS-CoV-2 virulence factor nsp1 with DNA polymerase α–primase. Protein Sci. 31, 333–344 (2022).

Article 

留言 (0)

沒有登入
gif