Strategies for targeting cytokines in inflammatory bowel disease

Altan-Bonnet, G. & Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. Immunol. 19, 205–217 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

Article  CAS  PubMed  Google Scholar 

Fan, H. et al. Innate lymphoid cells: regulators of gut barrier function and immune homeostasis. J. Immunol. Res. 2019, 2525984 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernink, J. H., Germar, K. & Spits, H. The role of ILC2 in pathology of type 2 inflammatory diseases. Curr. Opin. Immunol. 31, 115–120 (2014).

Article  CAS  PubMed  Google Scholar 

Rao, A. et al. Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nat. Commun. 11, 2049 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Coombes, J. L. et al. A functionally specialized population of mucosal CD103 DCs induces Foxp3 regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakahashi-Oda, C. et al. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces. Nat. Immunol. 17, 441–450 (2016).

Article  CAS  PubMed  Google Scholar 

Olszak, T. et al. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509, 497–502 (2014). This work is a key paper on the role of IL-10 and epithelial cell function.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Lee, C. H., Koh, S. J., Radi, Z. A. & Habtezion, A. Animal models of inflammatory bowel disease: novel experiments for revealing pathogenesis of colitis, fibrosis, and colitis-associated colon cancer. Intest. Res. 21, 295–305 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Jans, D. & Cleynen, I. The genetics of non-monogenic IBD. Hum. Genet. 142, 669–682 (2023).

Article  PubMed  Google Scholar 

Al-Sadi, R., Ye, D., Dokladny, K. & Ma, T. Y. Mechanism of IL-1β-induced increase in intestinal epithelial tight junction permeability. J. Immunol. 180, 5653–5661 (2008).

Article  CAS  PubMed  Google Scholar 

Shouval, D. S. et al. Interleukin 1β mediates intestinal inflammation in mice and patients with interleukin 10 receptor deficiency. Gastroenterology 151, 1100–1104 (2016).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 7, 1106–1115 (2014).

Article  CAS  PubMed  Google Scholar 

Coccia, M. et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ TH17 cells. J. Exp. Med. 209, 1595–1609 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aschenbrenner, D. et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut 70, 1023–1036 (2021).

Article  CAS  PubMed  Google Scholar 

Kaminsky, L. W., Al-Sadi, R. & Ma, T. Y. IL-1β and the intestinal epithelial tight junction barrier. Front. Immunol. 12, 767456 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedrich, M. et al. IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Luca, A. et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl Acad. Sci. USA 111, 3526–3531 (2014).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Liso, M. et al. Interleukin 1β blockade reduces intestinal inflammation in a murine model of tumor necrosis factor-independent ulcerative colitis. Cell Mol. Gastroenterol. Hepatol. 14, 151–171 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raine, T. et al. Results of a randomised controlled trial to evaluate interleukin 1 blockade with anakinra in patients with acute severe ulcerative colitis (IASO). J. Crohn’s Colitis 17, i43–i46 (2023).

Article  Google Scholar 

Wirtz, S., Becker, C., Blumberg, R., Galle, P. R. & Neurath, M. F. Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA. J. Immunol. 168, 411–420 (2002).

Article  CAS  PubMed  Google Scholar 

Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanai, T. et al. Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn’s disease. Gastroenterology 121, 875–888 (2001).

Article  CAS  PubMed  Google Scholar 

Gao, H. et al. Dysregulated microbiota-driven gasdermin d activation promotes colitis development by mediating IL-18 release. Front. Immunol. 12, 750841 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegmund, B., Lehr, H. A., Fantuzzi, G. & Dinarello, C. A. IL-1β-converting enzyme (caspase-1) in intestinal inflammation. Proc. Natl Acad. Sci. USA 98, 13249–13254 (2001).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Bauer, C. et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199 (2010).

Article  CAS  PubMed  Google Scholar 

Castro-Dopico, T. et al. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50, 1099–1114.e10 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toskas, A. et al. Expression of IL-21 and IL-33 in intestinal mucosa of inflammatory bowel disease: an immunohistochemical study. Diagnostics 13, 2185 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pastorelli, L. et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental TH1/TH2 driven enteritis. Proc. Natl Acad. Sci. USA 107, 8017–8022 (2010).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Waddell, A., Vallance, J. E., Fox, S. & Rosen, M. J. IL-33 is produced by colon fibroblasts and differentially regulated in acute and chronic murine colitis. Sci. Rep. 11, 9575 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Oboki, K. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl Acad. Sci. USA 107, 18581–18586 (2010).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014). This paper uncovers a novel role of IL-33 in controlling intestinal Tregcell function.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, S., Zhang, J., Jiang, X., Wang, W. & Chen, Y. Q. Free fatty acid receptor 4 deletion attenuates colitis by modulating Treg cells via ZBED6–IL33 pathway. eBioMedicine 80, 104060 (2022).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif