Gestational Diabetes Mellitus and its Effects on the Developing Cerebellum: A Narrative Review on Experimental Studies

References

1. Saeedi Borujeni MJ, Esfandiary E, Ghanadian M, Valiani A, Baradaran A, Yazdani A. Alterations in lipid peroxidation, lipid profile, insulin sensitivity, and hepatic histopathological changes in diabetic rats following the treatment with Salvadora persica. Journal of cellular biochemistry. 2019 Mar;120(3):3696-708.
2. Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The effect of diabetes mellitus on apoptosis in hippocampus: Cellular and molecular aspects. International journal of preventive medicine. 2016;7.
3. Hami J, Shojae F, Vafaee-Nezhad S, Lotfi N, Kheradmand H, Haghir H. Some of the experimental and clinical aspects of the effects of the maternal diabetes on developing hippocampus. World journal of diabetes. 2015;6(3):412.
4. Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes care. 2007;30(Supplement 2):S112-S9.
5. Baz B, Riveline J-P, Gautier J-F. ENDOCRINOLOGY OF PREGNANCY: Gestational diabetes mellitus: definition, aetiological and clinical aspects. European journal of endocrinology. 2016;174(2):R43-R51.
6. Anderson JL, Waller DK, Canfield MA, Shaw GM, Watkins ML, Werler MM. Maternal obesity, gestational diabetes, and central nervous system birth defects. Epidemiology. 2005;16(1):87-92.
7. Mitanchez D, Burguet A, Simeoni U. Infants born to mothers with gestational diabetes mellitus: mild neonatal effects, a long-term threat to global health. The Journal of pediatrics. 2014;164(3):445-50.
8. Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396-9.
9. Poolsup N, Suksomboon N, Amin M. Effect of treatment of gestational diabetes mellitus: a systematic review and meta-analysis. PLoS One. 2014;9(3):e92485.
10. Hernandez TL, Van Pelt RE, Anderson MA, Reece MS, Reynolds RM, Becky A, et al. Women with gestational diabetes mellitus randomized to a higher–complex carbohydrate/low-fat diet manifest lower adipose tissue insulin resistance, inflammation, glucose, and free fatty acids: a pilot study. Diabetes Care. 2016;39(1):39-42.
11. Denison F, Macnaught G, Semple S, Terris G, Walker J, Anblagan D, et al. Brain Development in Fetuses of Mothers with Diabetes: A Case-Control MR Imaging Study. American Journal of Neuroradiology. 2017;38(5):1037-44.
12. Babiker O. Long-term effects of maternal diabetes on their offspring development and behaviours. Sudanese J Ped. 2007;8:133-46.
13. Georgieff MK. The effect of maternal diabetes during pregnancy on the neurodevelopment of offspring. Minnesota medicine. 2006;89(3):44-7.
14. Persaud OD. Maternal diabetes and the consequences for her offspring. J Develop Disab. 2007;1:101-34.
15. Nelson CA, Wewerka S, Thomas KM, deRegnier R-a, Tribbey-Walbridge S, Georgieff M. Neurocognitive sequelae of infants of diabetic mothers. Behavioral neuroscience. 2000;114(5):950.
16. Ornoy A. Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatric endocrinology reviews: PER. 2005;3(2):104-13.
17. Ratzon N, Greenbaum C, Dulitzky M, Ornoy A. Comparison of the motor development of school-age children born to mothers with and without diabetes mellitus. Physical & occupational therapy in pediatrics. 2000;20(1):43-57.
18. Carrapato M, Marcelino F. The infant of the diabetic mother: The critical developmental windows. Early pregnancy (Online). 2001;5(1):57-8.
19. Dheen ST, Tay SS, Boran J, Ting LW, Kumar SD, Fu J, et al. Recent studies on neural tube defects in embryos of diabetic pregnancy: an overview. Current medicinal chemistry. 2009;16(18):2345-54.
20. Gao Q, Gao Y-M. Hyperglycemic condition disturbs the proliferation and cell death of neural progenitors in mouse embryonic spinal cord. International Journal of Developmental Neuroscience. 2007;25(6):349-57.
21. Delascio Lopes C, Sinigaglia-Coimbra R, Mazzola J, Camano L, Mattar R. Neurofunctional evaluation of young male offspring of rat dams with diabetes induced by streptozotocin. ISRN endocrinology. 2011;2011.
22. BORUJENI MJS, Javad H, Haghir H, Rastin M, Sazegar G. Evaluation of Bax and Bcl-2 proteins expression in the rat hippocampus due to childhood febrile seizure. Iranian journal of child neurology. 2016;10(1):53.
23. Lotfi N, Hami J, Hosseini M, Haghir D, Haghir H. Diabetes during pregnancy enhanced neuronal death in the hippocampus of rat offspring. International Journal of Developmental Neuroscience. 2016;51:28-35.
24. Ruigrok T, Sillitoe RV, Voogd J. Cerebellum and cerebellar connections. 2014.
25. Klein A, Ulmer J, Quinet S, Mathews V, Mark L. Nonmotor functions of the cerebellum: an introduction. American Journal of Neuroradiology. 2016;37(6):1005-9.
26. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807-15.
27. Lange I, Kasanova Z, Goossens L, Leibold N, De Zeeuw CI, van Amelsvoort T, et al. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neuroscience & Biobehavioral Reviews. 2015;59:83-91.
28. Wang SS-H, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518-32.
29. Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in systems neuroscience. 2014;8.
30. Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum (London, England). 2016;15(1):34.
31. Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP–mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophrenia research. 2015;167(1):42-56.
32. Kim D-J, Kent JS, Bolbecker AR, Sporns O, Cheng H, Newman SD, et al. Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis. Schizophrenia bulletin. 2014;40(6):1216-26.
33. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier J-C, Huston-Presley L, Friedman JE, et al. TNF-α is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51(7):2207-13.
34. Robitaille J, Grant AM. The genetics of gestational diabetes mellitus: evidence for relationship with type 2 diabetes mellitus. Genetics in Medicine. 2008;10(4):240-50.
35. Zhang C, Bao W, Rong Y, Yang H, Bowers K, Yeung E, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Human reproduction update. 2013;19(4):376-90.
36. Lowe Jr WL, Scholtens DM, Sandler V, Hayes MG. Genetics of Gestational Diabetes Mellitus and Maternal Metabolism. Current diabetes reports. 2016;16(2):15-.
37. Xiong X, Saunders L, Wang F, Demianczuk N. Gestational diabetes mellitus: prevalence, risk factors, maternal and infant outcomes. International Journal of Gynecology & Obstetrics. 2001;75(3):221-8.
38. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290-e6.
39. Di Cianni G, Volpe L, Lencioni C, Miccoli R, Cuccuru I, Ghio A, et al. Prevalence and risk factors for gestational diabetes assessed by universal screening. Diabetes research and clinical practice. 2003;62(2):131-7.
40. Carpenter MW, Coustan DR. Criteria for screening tests for gestational diabetes. American journal of obstetrics and gynecology. 1982;144(7):768-73.
41. Ural SH, Repke JT. Gestational diabetes mellitus. Reviews in Obstetrics and Gynecology. 2008;1(3):129.
42. Kamana K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Annals of Nutrition and Metabolism. 2015;66(Suppl. 2):14-20.
43. Mumm H, Glintborg D, Sorensen JA, Andersen LLT, Ravn P, Andersen M. Pregnancy in women with polycystic ovary syndrome is associated with higher risk of gestational diabetes mellitus, but not of other adverse obstetric outcomes. 2014.
44. Mitanchez D, Yzydorczyk C, Siddeek B, Boubred F, Benahmed M, Simeoni U. The offspring of the diabetic mother–short-and long-term implications. Best Practice & Research Clinical Obstetrics & Gynaecology. 2015;29(2):256-69.
45. Balsells M, García-Patterson A, Solà I, Roqué M, Gich I, Corcoy R. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: a systematic review and meta-analysis. Bmj. 2015;350:h102.
46. Ruchat SM, Hivert MF, Bouchard L. Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutrition reviews. 2013;71(S1).
47. Fornes D, White V, Heinecke F, Capobianco E, Jawerbaum A. microRNA-130 and microRNA-122 alteration are related to lipid metabolic impairments in the foetal liver of rats with gestational diabetes mellitus. Placenta. 2017;51:123.
48. Floris I, Descamps B, Vardeu A, Mitić T, Posadino AM, Shantikumar S, et al. Gestational diabetes mellitus impairs fetal endothelial cell functions through a mechanism involving microRNA-101 and histone methyltransferase enhancer of zester homolog-2. Arteriosclerosis, thrombosis, and vascular biology. 2015:ATVBAHA. 114.304730.
49. Mirzaei H, Gholamin S, Shahidsales S, Sahebkar A, Jaafari MR, Mirzaei HR, et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. European journal of cancer. 2016;53:25-32.
50. Salarinia R, Sahebkar A, Peyvandi M, Reza Mirzaei H, Reza Jaafari M, Matbou Riahi M, et al. Epi-drugs and Epi-miRs: moving beyond current cancer therapies. Current cancer drug targets. 2016;16(9):773-88.
51. Reza Mirzaei H, Sahebkar A, Mohammadi M, Yari R, Salehi H, Hasan Jafari M, et al. Circulating microRNAs in hepatocellular carcinoma: potential diagnostic and prognostic biomarkers. Current pharmaceutical design. 2016;22(34):5257-69.
52. Mirzaei H, Khataminfar S, Mohammadparast S, Shahid Sales S, Maftouh M, Mohammadi M, et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives. Current medicinal chemistry. 2016;23(36):4135-50.
53. Mirzaei H, Momeni F, Saadatpour L, Sahebkar A, Goodarzi M, Masoudifar A, et al. MicroRNA: Relevance to stroke diagnosis, prognosis and therapy. Journal of cellular physiology. 2017.
54. Poirier C, Desgagné V, Guérin R, Bouchard L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Current Diabetes Reports. 2017;5(17):1-10.
55. Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, et al. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One. 2011;6(8):e23925.
56. Deiuliis J. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. International journal of obesity. 2016;40(1):88-101.
57. Slusarz A, Pulakat L. The two faces of miR-29. Journal of cardiovascular medicine (Hagerstown, Md). 2015;16(7):480.
58. Shi Z, Zhao C, Guo X, Ding H, Cui Y, Shen R, et al. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERα expression in estrogen-induced insulin resistance. Endocrinology. 2014;155(5):1982-90.
59. Chim SS, Shing TK, Hung EC, Leung T-y, Lau T-k, Chiu RW, et al. Detection and characterization of placental microRNAs in maternal plasma. Clinical chemistry. 2008;54(3):482-90.
60. Miura K, Miura S, Yamasaki K, Higashijima A, Kinoshita A, Yoshiura K-i, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clinical chemistry. 2010;56(11):1767-71.
61. Luo S-S, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biology of reproduction. 2009;81(4):717-29.
62. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, et al. Placental exosomes in normal and complicated pregnancy. American journal of obstetrics and gynecology. 2015;213(4):S173-S81.
63. Radha V, Kanthimathi S, Anjana RM, Mohan V. Genetics of gestational diabetes mellitus. Journal Of Pakistan Medical Association. 2016:s11.
64. Shaat N, Groop L. Genetics of gestational diabetes mellitus. Current medicinal chemistry. 2007;14(5):569-83.
65. Styrud J, Thunberg L, Nybacka O, Eriksson UJ. Correlations between maternal metabolism and deranged development in the offspring of normal and diabetic rats. Pediatric research. 1995;37(3):343-53.
66. Eidelman AI, Samueloff A, editors. The pathophysiology of the fetus of the diabetic mother. Seminars in perinatology; 2002: Elsevier.
67. Hami J, Sadr-Nabavi A, Sankian M, Balali-Mood M, Haghir H. The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus. Brain Structure and Function. 2013:1-12.
68. Hami J, Kerachian M-A, Karimi R, Haghir H, Sadr-Nabavi A. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates. Journal of Receptors and Signal Transduction. 2016;36(3):254-60.
69. Hami J, Karimi R, Haghir H, Gholamin M, Sadr-Nabavi A. Diabetes in Pregnancy Adversely Affects the Expression of Glycogen Synthase Kinase-3 [beta] in the Hippocampus of Rat Neonates. Journal of Molecular Neuroscience. 2015;57(2):273.
70. Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. The American journal of clinical nutrition. 2000;71(5):1256s-61s.
71. Pagán A, Prieto-Sánchez MT, Blanco-Carnero JE, Gil-Sánchez A, Parrilla JJ, Demmelmair H, et al. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. American Journal of Physiology-Endocrinology and Metabolism. 2013;305(7):E826-E33.
72. Larqué E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. The American journal of clinical nutrition. 2006;84(4):853-61.
73. Innis SM. Dietary (n-3) fatty acids and brain development. The Journal of nutrition. 2007;137(4):855-9.
74. Uauy R, Dangour AD. Nutrition in brain development and aging: role of essential fatty acids. Nutrition reviews. 2006;64(s2).
75. McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2006;75(4):329-49.
76. Kawakita E, Hashimoto M, Shido O. Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience. 2006;139(3):991-7.
77. Tokuda H, Kontani M, Kawashima H, Kiso Y, Shibata H, Osumi N. Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis. Neuroscience research. 2014;88:58-66.
78. Zein S, Rachidi S, Hininger-Favier I. Is oxidative stress induced by iron status associated with gestational diabetes mellitus? Journal of Trace Elements in Medicine and Biology. 2014;28(1):65-9.
79. Lappas M, Hiden U, Desoye G, Froehlich J, Mouzon SH-d, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxidants & redox signaling. 2011;15(12):3061-100.
80. Chen X, Scholl TO. Oxidative stress: changes in pregnancy and with gestational diabetes mellitus. Current diabetes reports. 2005;5(4):282-8.
81. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia–revisited–the bad ugly and good: implications to the heart and brain. Sleep medicine reviews. 2015;20:27-45.
82. Deverman BE, Patterson PH. Cytokines and CNS development. Neuron. 2009;64(1):61-78.
83. Bo S, Signorile A, Menato G, Gambino R, Bardelli C, Gallo M, et al. C-reactive protein and tumor necrosis factor-alpha in gestational hyperglycemia. Journal of endocrinological investigation. 2005;28(9):779-86.
84. Coughlan M, Oliva K, Georgiou H, Permezel J, Rice G. Glucose‐induced release of tumour necrosis factor‐alpha from human placental and adipose tissues in gestational diabetes mellitus. Diabetic Medicine. 2001;18(11):921-7.
85. Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A, et al. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecological endocrinology. 2009;25(4):258-63.
86. MORISSET AS, DUBÉ MC, Cote JA, Robitaille J, WEISNAGEL S, Tchernof A. Circulating interleukin‐6 concentrations during and after gestational diabetes mellitus. Acta obstetricia et gynecologica Scandinavica. 2011;90(5):524-30.
87. Hami J, Sadr-Nabavi A, Sankian M, Haghir H. Sex differences and left–right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus. Brain Structure and Function. 2012;217(2):293-302.
88. Hami J, Kheradmand H, Haghir H. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study. Cellular & Molecular Neurobiology. 2014;34(2).
89. Haghir H, Rezaee A-A-R, Nomani H, Sankian M, Kheradmand H, Hami J. Sexual dimorphism in expression of insulin and insulin-like growth factor-I receptors in developing rat cerebellum. Cellular & Molecular Neurobiology. 2013;33(3).
90. Haghir H, Sankian M, Kheradmand H, Hami J. The effects of induced type-I diabetes on developmental regulation of insulin & insulin like growth factor-1 (IGF-1) receptors in the cerebellum of rat neonates. Metabolic brain disease. 2013;28(3):397.
91. Yong Y, Meng Y, Ding H, Fan Z, Tang Y, Zhou C, et al. PACT/RAX regulates the migration of cerebellar granule neurons in the developing cerebellum. Scientific reports. 2015;5.
92. Clancy B, Finlay BL, Darlington RB, Anand K. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931-7.
93. Engelkamp D, Rashbass P, Seawright A, van Heyningen V. Role of Pax6 in development of the cerebellar system. Development. 1999;126(16):3585-96.
94. Zhu Y, Yu T, Rao Y. Temporal regulation of cerebellar EGL migration through a switch in cellular responsiveness to the meninges. Developmental biology. 2004;267(1):153-64.
95. Altman J. Development of the cerebellar system. Relation to its Evolution, Structure, and Functions. 1996.
96. Hami J, Vafaei-nezhad S, Ghaemi K, Sadeghi A, Ivar G, Shojae F, et al. Stereological study of the effects of maternal diabetes on cerebellar cortex development in rat. Metabolic brain disease. 2016;31(3):643.
97. Hami J, Vafaei-Nezhad S, Haghir D, Haghir H. Insulin-like growth factor-1 receptor Is differentially distributed in developing cerebellar cortex of rats born to diabetic mothers. Journal of Molecular Neuroscience. 2016;58(2):221.
98. Razi EM, Ghafari S, Golalipour MJ. Effect of gestational diabetes on purkinje and granule cells distribution of the rat cerebellum in 21 and 28 days of postnatal life. Basic and clinical neuroscience. 2015;6(1):6.
99. Razi EM, Ghafari S, Hojati V, Golalipour MJ. Effect of gestational diabetes on neuronal cells in rat cerebellum in early postnatal life. International Journal of Morphology. 2014;32(2):420-5.
100. Wei S, Soh SLY, Xia J, Ong WY, Pang ZP, Han W. Motor neuropathy‐associated mutation impairs Seipin functions in neurotransmission. Journal of neurochemistry. 2014;129(2):328-38.
101. Adams DJ, Shen C, Levenga J, Basta T, Eisenberg SP, Mapes J, et al. Synaptophysin is a β-Amyloid Target that Regulates Synaptic Plasticity and Seizure Susceptibility in an Alzheimer9s Model. bioRxiv. 2017:129551.
102. Hami J, Vafaei-Nezhad S, Ivar G, Sadeghi A, Ghaemi K, Mostafavizadeh M, et al. Altered expression and localization of synaptophysin in developing cerebellar cortex of neonatal rats due to maternal diabetes mellitus. Metabolic brain disease. 2016;31(6):1369-80.

留言 (0)

沒有登入
gif