A comparative assessment of microbial biodiesel and its life cycle analysis

Abeln F, Chuck CJ (2021) The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 20(221):1–31. https://doi.org/10.1186/s12934-021-01712-1

Article  CAS  Google Scholar 

Adegboye MF, Ojuederie OB, Talia PM, Babalola OO (2021) Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnol Biofuels 14(5):1–21. https://doi.org/10.1186/s13068-020-01853-2

Article  CAS  Google Scholar 

Adesanya VO, Cadena E, Scott SA, Smith AG (2014) Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresour Technol 163:343–355. https://doi.org/10.1016/j.biortech.2014.04.051

Article  CAS  PubMed  Google Scholar 

Adewale P, Dumont M-J, Ngadi M (2015) Recent trends of biodiesel production from animal fat wastes and associated production techniques. J Renew Sustain 45:574–88. https://doi.org/10.1016/j.rser.2015.02.039

Article  CAS  Google Scholar 

Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67

Article  CAS  Google Scholar 

Ali SS, Al-Tohamy R, Mahmoud YA-G, Kornaros M, Sun S, Sun J (2022) Recent advances in the life cycle assessment of biodiesel production linked to azo dye degradation using yeast symbionts of termite guts: a critical review. Energy Rep 8:7557–81. https://doi.org/10.1016/j.egyr.2022.05.240

Article  Google Scholar 

Alishah Aratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR (2019) Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 18:178. https://doi.org/10.1186/s12934-019-1228-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Mawali KS, Osman AI, Al-Muhtaseb AH, Mehta N, Jamil F, Mjalli F et al (2021) Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: a circular bioeconomy approach. Renew Energy 170:832–46. https://doi.org/10.1016/j.renene.2021.02.027

Article  CAS  Google Scholar 

Al-Muhtaseb AH, Osman AI, Murphin Kumar PS, Jamil F, Al-Haj L, Al Nabhani A et al (2021) Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Energy Convers Manag 236:114040. https://doi.org/10.1016/j.enconman.2021.114040

Article  CAS  Google Scholar 

Angoy A, Brianceau S, Chabrier F, Ginisty P, Jomaa W, Rochas J-F et al (2019) Microwave technology for food applications. In: Chemat F, Vorobiev E (eds) Green Food Processing Techniques. Academic Press, pp 455–98. https://doi.org/10.1016/B978-0-12-815353-6.00017-3

Chapter  Google Scholar 

Arazo R, de Luna MD, Capareda S, Ido A, Mabayo, (2021) Superior sewage sludge disposal with minimal greenhouse gas emission via fast pyrolysis in a fluidized bed reactor. IOP Conf Ser Earth Environ Sci 765:012094. https://doi.org/10.1088/1755-1315/765/1/012094

Article  Google Scholar 

Ardente F, Cellura M (2012) Economic allocation in life cycle assessment: the state of the art and discussion of examples. J Ind Ecol 16:387–398

Article  Google Scholar 

Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu SS, Sarris D, Philippoussis A et al (2018) Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 124:336–367. https://doi.org/10.1111/jam.13633

Article  CAS  PubMed  Google Scholar 

Azarpour A, Zendehboudi S, Mohammadzadeh O, Rajabzadeh AR, Chatzis I (2022) A review on microalgal biomass and biodiesel production through co-cultivation strategy. Energy Convers Manag 267:115757. https://doi.org/10.1016/j.enconman.2022.115757

Article  CAS  Google Scholar 

Azizpanah A, Fathi R, Taki M (2023) Eco-energy and environmental evaluation of cantaloupe production by life cycle assessment method. Environ Sci Pollut Res 30:1854–1870. https://doi.org/10.1007/s11356-022-22307-2

Article  Google Scholar 

Babu BV (2006) Life cycle inventory analysis (LCIA). Life cycle Assessment & Life Cycle Management Methodologies. The Boulevard Hotel, Kuala Lumpur, pp 1–54. https://www.researchgate.net/publication/252225470_Life_Cycle_Inventory_Analysis_LCIA

Banerjee R, Chintagunta AD, Ray S (2019) Laccase mediated delignification of pineapple leaf waste: an ecofriendly sustainable attempt towards valorization. BMC Chem 13:58. https://doi.org/10.1186/s13065-019-0576-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bankovic-Ilic I, Stojković I, Stamenković O, Veljković V, Hung Y-T (2014) Waste animal fats as feedstocks for biodiesel production. Renew Sust Energ Rev 32:238–254. https://doi.org/10.1016/j.rser.2014.01.038

Article  CAS  Google Scholar 

Barbanera M, Castellini M, Tasselli G, Turchetti B, Cotana F, Buzzini P (2021) Prediction of the environmental impacts of yeast biodiesel production from cardoon stalks at industrial scale. Fuel 283:118967. https://doi.org/10.1016/j.fuel.2020.118967

Article  CAS  Google Scholar 

Basu S, Bose C, Ojha N, Das N, Das J, Pal M et al (2015) Evolution of bacterial and fungal growth media. Bioinformation 11(4):182–184. https://doi.org/10.6026/97320630011182

Article  PubMed  PubMed Central  Google Scholar 

Bergerson J, Lave L (2004) Life Cycle Analysis of power generation systems. Encyclopedia of Energy 3:635–645. https://doi.org/10.1016/B0-12-176480-X/00234-5

Article  Google Scholar 

Bi Z, Zhang J, Zhu Z, Liang Y, Wiltowski T (2018) Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction. Appl Energy 209:435–44. https://doi.org/10.1016/j.apenergy.2017.11.031

Article  CAS  Google Scholar 

Bradley T, Ling-Chin J, Maga D, Speranza LG, Roskilly AP (2022) 5.18 - Life cycle assessment (LCA) of algae biofuels. In: Letcher TM (ed) Comprehensive Renewable Energy, 2nd edn. Elsevier, Oxford, pp 387–404. https://doi.org/10.1016/B978-0-12-819727-1.00067-4

Chapter  Google Scholar 

Bradley T, Maga D (2019) Life cycle analysis of producing microbial lipids and biodiesel: comparison with plant lipids. Methods Mol Biol 1995:195–214. https://doi.org/10.1007/978-1-4939-9484-7_13

Article  CAS  PubMed  Google Scholar 

Braunwald T, French WT, Claupein W, Graeff-Hönninger S (2016) Economic assessment of microbial biodiesel production using heterotrophic yeasts. Int J Green Energy 13:274–282. https://doi.org/10.1080/15435075.2014.940957

Article  CAS  Google Scholar 

Brusseau ML (2019) Sustainable development and other solutions to pollution and global change. Environ Sci Pollut Res. https://doi.org/10.1016/b978-0-12-814719-1.00032-x

Article  Google Scholar 

Canoira L, Rodríguez-Gamero M, Querol E, Alcántara R, Lapuerta M, Oliva F (2008) Biodiesel from low-grade animal fat: production process assessment and biodiesel properties characterization. Ind Eng Chem Res 47:7997–8004. https://doi.org/10.1021/ie8002045

Article  CAS  Google Scholar 

Cao C (2017) Sustainability and life assessment of high strength natural fibre composites in construction. In: Advanced High Strength Natural Fibre Composites in Construction. Woodhead Publ, pp 529–44. https://doi.org/10.1016/B978-0-08-100411-1.00021-2

Chapter  Google Scholar 

Carvalho AKF, da Conceição LR, Silva JPV, Perez VH, de Castro HF (2017) Biodiesel production from Mucor circinelloides using ethanol and heteropolyacid in one and two-step transesterification. Fuel 202:503–11. https://doi.org/10.1016/j.fuel.2017.04.063

Article  CAS  Google Scholar 

Castellini M, Ubertini S, Barletta D, Baffo I, Buzzini P, Barbanera M (2021) Techno-economic analysis of biodiesel production from microbial oil using cardoon stalks as carbon source. Energies (Basel). https://doi.org/10.3390/en14051473

Article  Google Scholar 

Chamkalani A, Zendehboudi S, Rezaei N, Hawboldt K (2020) A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. Renew Sust Energ Rev. https://doi.org/10.1016/j.rser.2020.110143

Article  Google Scholar 

Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057. https://doi.org/10.1002/ejlt.201000027

Article  CAS  Google Scholar 

Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81. https://doi.org/10.1016/j.biortech.2010.06.159

Article  CAS  PubMed  Google Scholar 

Cherubini F (2010) GHG balances of bioenergy systems – overview of key steps in the production chain and methodological concerns. Renew Energy 35:1565–73. https://doi.org/10.1016/j.renene.2009.11.035

Article  CAS  Google Scholar 

Chintagunta AD, Zuccaro G, Kumar M, Kumar SPJ, Garlapati VK, Postemsky PD et al (2021) Biodiesel production from lignocellulosic biomass using oleaginous microbes: prospects for integrated biofuel production. Front Microbiol 12:1. https://doi.org/10.3389/fmicb.2021.658284

Article  Google Scholar 

Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

Article  CAS  PubMed  Google Scholar 

Chopra J, Rangarajan V, Sen R (2022) Recent developments in oleaginous yeast feedstock based biorefinery for production and life cycle assessment of biofuels and value-added products. Sustain Energy Technol Assess 53:102621. https://doi.org/10.1016/j.seta.2022.102621

Article  Google Scholar 

Chopra J, Tiwari BR, Dubey BK, Sen R (2020) Environmental impact analysis of oleaginous yeast based biodiesel and bio-crude production by life cycle assessment. J Clean Prod 271:122349. https://doi.org/10.1016/j.jclepro.2020.122349

Article  CAS  Google Scholar 

Chung ZL, Tan YH, Chan YS, Kansedo J, Mubarak NM, Ghasemi M et al (2019) Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatal Agric Biotechnol 21:101317. https://doi.org/10.1016/j.bcab.2019.101317

Article 

留言 (0)

沒有登入
gif