A Review: Biomechanical Aspects of the Fallopian Tube Relevant to its Function in Fertility

Malhotra N, Kumar P, Malhotra J, Bora NM, Mittal P. Jeffcoate’s principles of gynaecology. Jaypee Brothers Medical Publishers Pvt. Limited; 2014. [Online]. Available: https://books.google.com/books?id=sNKZoAEACAAJ.

Standring S. Gray’s anatomy: the anatomical basis of clinical practice. Forty-first edition. ed. Philadelphia: Elsevier Limited; 2016.

Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1–26. https://doi.org/10.1530/JOE-16-0302.

Article  CAS  Google Scholar 

Moore KL, Dalley AF. Clinically oriented anatomy. Wolters Kluwer India Pvt Ltd.; 2018. [Online]. Available: https://books.google.com/books?id=9CvvDwAAQBAJ.

Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23(4):1177–93. https://doi.org/10.1097/00003081-198012000-00023.

Article  CAS  Google Scholar 

Blandau R. Gamete transport-comparative aspects. In: Hafez ESE, Blandau RJ (eds.) The mammalian oviduct. Comparative biology and methodology. Chicago: University of Chicago Press; 1969. p. 129–162.

Okamura H, Morikawa H, Oshima M, Man-i M, Nishimura T. A morphological and physiological study of mesotubarium ovarica in humans. Int J Fertil. 1977;22(3):179–83, https://www.ncbi.nlm.nih.gov/pubmed/24013.

Cohen BM, Katz M. The significance of the convoluted oviduct in the infertile woman. J Reprod Med. 1978;21(1):31-5. https://pubmed.ncbi.nlm.nih.gov/567694/.

Mescher AL. Junqueira’s basic histology: text and atlas. Fifteenth edition. New York, New York: McGraw-Hill Education; 2018.

Ash JF, Morton DA, Scott SA. The big picture: histology. New York: McGraw-Hill; 2013.

Ross MH, Pawlina W. Histology: a text and atlas : with correlated cell and molecular biology. Wolters Kluwer Health; 2016. [Online]. Available: https://books.google.com/books?id=A7zooQEACAAJ.

Suarez SS. Formation of a reservoir of sperm in the oviduct. Reprod Domest Anim. 2002;37(3):140–3. https://doi.org/10.1046/j.1439-0531.2002.00346.x.

Article  Google Scholar 

Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol. 2008;52(5–6):455–62. https://doi.org/10.1387/ijdb.072527ss.

Article  Google Scholar 

De Jonge C. Biological basis for human capacitation—revisited. Hum Reprod Update. 2017;23(3):289–99. https://doi.org/10.1093/humupd/dmw048.

Article  CAS  Google Scholar 

Ledger WL, Tan SL, Bahathiq AOS, The fallopian tube in infertility and IVF practice. Cambridge University Press; 2010. [Online]. Available: https://books.google.com/books?id=HKSTrhhXWoUC.

Halbert SA, Szal SE, Broderson SH. Anatomical basis of a passive mechanism for ovum retention at the ampulloisthmic junction. Anat Rec. 1988;221(4):841–5. https://doi.org/10.1002/ar.1092210408.

Article  CAS  Google Scholar 

Anand S, Guha SK. Dynamics of the ampullary-isthmic junction in rabbit oviduct. Gynecol Obstet Invest. 1982;14(1):39–46. https://doi.org/10.1159/000299441.

Article  CAS  Google Scholar 

Jansen RP. Cyclic changes in the human fallopian tube isthmus and their functional importance. Am J Obstet Gynecol. 1980;136(3):292–308. https://doi.org/10.1016/0002-9378(80)90853-4.

Article  CAS  Google Scholar 

Rocker I. The anatomy of the utero-tubal junction area. Proceedings of the Royal Society of Medicine. 1964;57(8): 707–709. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1898715/.

Pauerstein CJ, Woodruff JD, Zachary AS. Factors influencing physiologic activities in the fallopian tube; the anatomy, physiology, and pharmacology of tubal transport. Obstet Gynecol Surv. 1968;23(3):215–43. https://doi.org/10.1097/00006254-196803000-00001.

Article  CAS  Google Scholar 

Woodruff JD, Pauerstein CJ. The fallopian tube: structure, function, pathology, and management. Williams & Wilkins Company; 1969.

Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet. 2014;31(10):1337–47. https://doi.org/10.1007/s10815-014-0309-x.

Article  Google Scholar 

Jansen RP. Endocrine response in the fallopian tube. Endocr Rev. 1984;5(4):525–51. https://doi.org/10.1210/edrv-5-4-525.

Article  CAS  Google Scholar 

Eddy CA, Flores JJ, Archer DR, Pauerstein CJ. The role of cilia in fertility: an evaluation by selective microsurgical modification of the rabbit oviduct. Am J Obstet Gynecol. 1978;132(7):814–21. https://doi.org/10.1016/s0002-9378(78)80016-7.

Article  CAS  Google Scholar 

Lyons R, Saridogan E, Djahanbakhch O. The reproductive significance of human fallopian tube cilia. Hum Reprod Update. 2006;12(4):363–72. https://doi.org/10.1093/humupd/dml012.

Article  CAS  Google Scholar 

Morales P, Palma V, Salgado AM, Villalon M. Sperm interaction with human oviductal cells in vitro. Hum Reprod. 1996;11(7):1504–9. https://doi.org/10.1093/oxfordjournals.humrep.a019426.

Article  CAS  Google Scholar 

Wilcox AJ, Weinberg CR, Baird DD. Timing of sexual intercourse in relation to ovulation—effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med. 1995;333(23):1517–21. https://doi.org/10.1056/NEJM199512073332301.

Article  CAS  Google Scholar 

Spassky N, Meunier A. The development and functions of multiciliated epithelia. Nat Rev Mol Cell Biol. 2017;18(7):423–36. https://doi.org/10.1038/nrm.2017.21.

Article  CAS  Google Scholar 

Holt WV, Fazeli A. Sperm storage in the female reproductive tract. Annu Rev Anim Biosci. 2016;4:291–310. https://doi.org/10.1146/annurev-animal-021815-111350.

Article  Google Scholar 

Ramakrishnan S, Kunjunni KT, Varghese S. A comparative study on segmental micro-anatomy of the human fallopian tube. Natl J Clin Anat. 2021;10(1):46. https://doi.org/10.4103/NJCA.NJCA_50_20.

Article  Google Scholar 

Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10(1):75–82. https://doi.org/10.1038/nrm2594.

Article  CAS  Google Scholar 

Evans JP, Leppert PC. “Feeling the force” in reproduction: mechanotransduction in reproductive processes. Connect Tissue Res. 2016;57(3):236–44. https://doi.org/10.3109/03008207.2016.1146715.

Article  CAS  Google Scholar 

Farge E. Chapter eight - mechanotransduction in development. In Labouesse M (ed.) Current topics in developmental biology. Academic Press; 2011. p. 243–265.

Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol. 2009;10(1):34–43. https://doi.org/10.1038/nrm2592.

Article  CAS  Google Scholar 

Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet. 2018;35(7):1135–48. https://doi.org/10.1007/s10815-018-1180-y.

Article  Google Scholar 

Kervancioglu ME, Saridogan E, Aitken RJ, Djahanbakhch O. Importance of sperm-to-epithelial cell contact for the capacitation of human spermatozoa in fallopian tube epithelial cell cocultures. Fertil Steril. 2000;74(4):780–4. https://doi.org/10.1016/s0015-0282(00)01514-4.

Article  CAS  Google Scholar 

Kervancioglu ME, Djahanbakhch O, Aitken RJ. Epithelial cell coculture and the induction of sperm capacitation. Fertil Steril. 1994;61(6):1103–8. https://doi.org/10.1016/s0015-0282(16)56764-8.

Article  CAS  Google Scholar 

Smith TT. The modulation of sperm function by the oviductal epithelium. Biol Reprod. 1998;58(5):1102–4. https://doi.org/10.1095/biolreprod58.5.1102.

Article  CAS  Google Scholar 

Barratt C, Cooke I. Review sperm transport in the human female reproductive tract—a dynamic interaction. Int J Androl. 1991;14(6):394–411. https://doi.org/10.1111/j.1365-2605.1991.tb01268.x.

Article  CAS  Google Scholar 

Pacey A, Hill C, Scudamore I, Warren M, Barratt C, Cooke I. Andrology: the interaction in vitro of human spermatozoa with epithelial cells from the human uterine (fallopian) tube. Hum Reprod. 1995;10(2):360–6. https://doi.org/10.1093/oxfordjournals.humrep.a135943.

Article  CAS  Google Scholar 

Gargus ES, Rogers HB, McKinnon KE, Edmonds ME, Woodruff TK. Engineered reproductive tissues. Nat Biomed Eng. 2020;4(4):381–93. https://doi.org/10.1038/s41551-020-0525-x.

Article  Google Scholar 

Atala A. Tissue engineering of reproductive tissues and organs. Fertil Steril. 2012;98(1):21–9. https://doi.org/10.1016/j.fertnstert.2012.05.038.

Article  CAS  Google Scholar 

Baah-Dwomoh A, McGuire J, Tan T, De Vita R. Mechanical properties of female reproductive organs and supporting connective tissues: a review of the current state of knowledge. Appl Mech Rev. 2016;68(6). https://doi.org/10.1115/1.4034442

Hawkins J, Miao X, Cui W, Sun Y. Biophysical optimization of preimplantation embryo culture: what mechanics can offer ART. Mol Hum Reprod. 2021;27(1):gaaa087. https://doi.org/10.1093/molehr/gaaa087.

Article  CAS  Google Scholar 

Elad D, Jaffa AJ, Grisaru D. Biomechanics of early life in the female reproductive tract. Physiology. 2020;35(2):134–43. https://doi.org/10.1152/physiol.00028.2019.

Article  CAS  Google Scholar 

Kolahi KS, Donjacour A, Liu X, Lin W, Simbulan RK, Bloise E, Maltepe E, Rinaudo P. Effect of substrate stiffness on early mouse embryo development. PLoS ONE. 2012;7(7):e41717. https://doi.org/10.1371/journal.pone.0041717.

Article  ADS  CAS  Google Scholar 

Kovalevsky G, Patrizio P. High rates of embryo wastage with use of assisted reproductive technology: a look at the trends between 1995 and 2001 in the United States. Fertil Steril. 2005;84(2):325–30. https://doi.org/10.1016/j.fertnstert.2005.04.020.

Article  Google Scholar 

Ghazal S, Patrizio P. Embryo wastage rates remain high in assisted reproductive technology (ART): a look at the trends from 2004–2013 in the USA. J Assist Reprod Genet. 2017;34(2):159–66. https://doi.org/10.1007/s10815-016-0858-2.

Article  Google Scholar 

Katz P, Showstack J, Smith JF, Nachtigall RD, Millstein SG, Wing H, Eisenberg ML, Pasch LA, Croughan MS, Adler N. Costs of infertility treatment: results from an 18-month prospective cohort study. Fertil Steril. 2011;95(3):915–21. https://doi.org/10.1016/j.fertnstert.2010.11.026.

Article  Google Scholar 

Garrido N, Bellver J, Remohí J, Simón C, Pellicer A. Cumulative live-birth rates per total number of embryos needed to reach newborn in consecutive in vitro fertilization (IVF) cycles: a new approach to measuring the likelihood of IVF success. Fertil Steril. 2011;96(1):40–6. https://doi.org/10.1016/j.fertnstert.2011.05.008.

Article  Google Scholar 

Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after in vitro fertilization. N Engl J Med. 2009;360(3):236–43.

留言 (0)

沒有登入
gif