Role of GBA variants in Lewy body disease neuropathology

Adler CH, Beach TG, Shill HA, Caviness JN, Driver-Dunckley E, Sabbagh MN et al (2017) GBA mutations in Parkinson disease: earlier death but similar neuropathological features. Eur J Neurol 24:1363–1368. https://doi.org/10.1111/ene.13395

Article  CAS  PubMed Central  Google Scholar 

Attems J, Toledo JB, Walker L, Gelpi E, Gentleman S, Halliday G et al (2021) Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathol 141:159–172. https://doi.org/10.1007/s00401-020-02255-2

Article  CAS  PubMed Central  Google Scholar 

Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N et al (2022) New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet 54:412–436. https://doi.org/10.1038/s41588-022-01024-z

Article  CAS  PubMed Central  Google Scholar 

Blauwendraat C, Bras JM, Nalls MA, Lewis PA, Hernandez DG, Singleton AB (2018) Coding variation in GBA explains the majority of the SYT11-GBA Parkinson’s disease GWAS locus. Mov Disord 33:1821–1823. https://doi.org/10.1002/mds.103

Article  PubMed Central  Google Scholar 

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

Article  CAS  Google Scholar 

Chatterjee D, Krainc D (2023) Mechanisms of Glucocerebrosidase Dysfunction in Parkinson’s Disease. J Mol Biol 435:168023. https://doi.org/10.1016/j.jmb.2023.168023

Article  CAS  Google Scholar 

Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E et al (2021) Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 53:294–303. https://doi.org/10.1038/s41588-021-00785-3

Article  CAS  PubMed Central  Google Scholar 

Chung EJ, Babulal GM, Monsell SE, Cairns NJ, Roe CM, Morris JC (2015) Clinical Features of Alzheimer Disease With and Without Lewy Bodies. JAMA Neurol 72:789–796. https://doi.org/10.1001/jamaneurol.2015.0606

Article  PubMed Central  Google Scholar 

DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32. https://doi.org/10.1186/s13024-019-0333-5

Article  PubMed Central  Google Scholar 

Dickson DW, Liu W, Hardy J, Farrer M, Mehta N, Uitti R et al (1999) Widespread alterations of alpha-synuclein in multiple system atrophy. Am J Pathol 155:1241–1251. https://doi.org/10.1016/s0002-9440(10)65226-1

Article  CAS  PubMed Central  Google Scholar 

Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR et al (2015) (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 16:1114–1130. https://doi.org/10.15252/embr.201540514

Article  CAS  PubMed Central  Google Scholar 

Gan-Or Z, Liong C, Alcalay RN (2018) GBA-Associated Parkinson’s Disease and Other Synucleinopathies. Curr Neurol Neurosci Rep 18:44. https://doi.org/10.1007/s11910-018-0860-4

Article  CAS  Google Scholar 

Guerreiro R, Ross OA, Kun-Rodrigues C, Hernandez DG, Orme T, Eicher JD et al (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. The Lancet Neurology 17:64–74. https://doi.org/10.1016/s1474-4422(17)30400-3

Article  Google Scholar 

Holstege H, Hulsman M, Charbonnier C, Grenier-Boley B, Quenez O, Grozeva D et al (2022) Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat Genet 54:1786–1794. https://doi.org/10.1038/s41588-022-01208-7

Article  CAS  PubMed Central  Google Scholar 

Hou X, Chen TH, Koga S, Bredenberg JM, Faroqi AH, Delenclos M et al (2023) Alpha-synuclein-associated changes in PINK1-PRKN-mediated mitophagy are disease context dependent. Brain Pathol. https://doi.org/10.1111/bpa.13175

Article  PubMed Central  Google Scholar 

Hou X, Fiesel FC, Truban D, Castanedes Casey M, Lin WL, Soto AI et al (2018) Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy 14:1404–1418. https://doi.org/10.1080/15548627.2018.1461294

Article  CAS  PubMed Central  Google Scholar 

Hou X, Watzlawik JO, Cook C, Liu CC, Kang SS, Lin WL et al (2020) Mitophagy alterations in Alzheimer’s disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimer’s Dementia 17:417–430. https://doi.org/10.1002/alz.12198

Article  CAS  Google Scholar 

Kasanuki K, Heckman MG, Diehl NN, Murray ME, Koga S, Soto A et al (2017) Regional analysis and genetic association of nigrostriatal degeneration in Lewy body disease. Mov Disord 32:1584–1593. https://doi.org/10.1002/mds.27184

Article  CAS  PubMed Central  Google Scholar 

Koga S, Lin WL, Walton RL, Ross OA, Dickson DW (2018) TDP-43 pathology in multiple system atrophy: colocalization of TDP-43 and α-synuclein in glial cytoplasmic inclusions. Neuropathol Appl Neurobiol 44:707–721. https://doi.org/10.1111/nan.12485

Article  CAS  PubMed Central  Google Scholar 

Koga S, Roemer SF, Tipton PW, Low PA, Josephs KA, Dickson DW (2020) Cerebrovascular pathology and misdiagnosis of multiple system atrophy: An autopsy study. Parkinsonism Relat Disord 75:34–40. https://doi.org/10.1016/j.parkreldis.2020.05.018

Article  PubMed Central  Google Scholar 

Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW (2021) Neuropathology and molecular diagnosis of Synucleinopathies. Mol Neurodegener 16:83. https://doi.org/10.1186/s13024-021-00501-z

Article  CAS  PubMed Central  Google Scholar 

Koga S, Zhou X, Dickson DW (2021) Machine learning-based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12710

Article  PubMed Central  Google Scholar 

Kosaka K, Yoshimura M, Ikeda K, Budka H (1984) Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree–a new disease? Clin Neuropathol 3:185–192

CAS  Google Scholar 

Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311–321. https://doi.org/10.1016/j.ajhg.2008.06.024

Article  CAS  PubMed Central  Google Scholar 

Liesinger AM, Graff-Radford NR, Duara R, Carter RE, Hanna Al-Shaikh FS, Koga S et al (2018) Sex and age interact to determine clinicopathologic differences in Alzheimer’s disease. Acta Neuropathol 136:873–885. https://doi.org/10.1007/s00401-018-1908-x

Article  PubMed Central  Google Scholar 

Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM et al (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease. Mov Disord 31:95–102. https://doi.org/10.1002/mds.26359

Article  CAS  Google Scholar 

McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D et al (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 89:88–100. https://doi.org/10.1212/wnl.0000000000004058

Article  PubMed Central  Google Scholar 

McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872. https://doi.org/10.1212/01.wnl.0000187889.17253.b1

Article  CAS  Google Scholar 

Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. https://doi.org/10.1007/s00401-011-0910-3

Article  CAS  Google Scholar 

Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:1091–1102. https://doi.org/10.1016/s1474-4422(19)30320-5

Article  CAS  PubMed Central  Google Scholar 

Nalls MA, Duran R, Lopez G, Kurzawa-Akanbi M, McKeith IG, Chinnery PF et al (2013) A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol 70:727–735. https://doi.org/10.1001/jamaneurol.2013.1925

Article  Google Scholar 

Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794. https://doi.org/10.1093/brain/awp044

Article  PubMed Central  Google Scholar 

Ortega RA, Bressman SB, Raymond D, Ozelius LJ, Wang C, Bennett SAL et al (2023) Differences in Sex-specific frequency of glucocerebrosidase variant carriers and familial parkinsonism. Mov Disord 38:714–715. https://doi.org/10.1002/mds.29353

Article  CAS  Google Scholar 

Parkkinen L, Neumann J, O’Sullivan SS, Holton JL, Revesz T, Hardy J et al (2011) Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson’s disease. Mol Genet Metab 103:410–412. https://doi.org/10.1016/j.ymgme.2011.04.015

Article  CAS  Google Scholar 

Riboldi GM, Di Fonzo AB (2019) GBA, Gaucher disease, and Parkinson’s disease: from genetic to clinic to new therapeutic approaches. Cells. https://doi.org/10.3390/cells8040364

Article  PubMed Central 

留言 (0)

沒有登入
gif