High expression of CD9 and Epidermal Growth Factor Receptor promotes the development of tongue cancer

Ganly I, Patel S, Shah J. Early stage squamous cell cancer of the oral tongue-clinicopathologic features affecting outcome. Cancer. 2012;118(1):101–11.

Article  PubMed  Google Scholar 

Campbell BR, Netterville JL, Sinard RJ, Mannion K, Rohde SL, Langerman A, et al. Early onset oral tongue cancer in the United States: a literature review. Oral Oncol [Internet]. 2018 Dec 1 [cited 2023 Oct 30]; 87:1. Available from: /pmc/articles/PMC7039330/

Zushi Y, Noguchi K, Urade M. An in vitro multistep carcinogenesis model for both HPV-positive and -negative human oral squamous cell carcinomas. Japanese J Oral Maxillofac Surg. 2013;59(3):159–71.

Article  Google Scholar 

Mithani SK, Mydlarz WK, Grumbine FL, Smith IM, Califano JA. Molecular genetics of premalignant oral lesions. Oral Dis. 2007;13(2):126–33.

Article  CAS  PubMed  Google Scholar 

Tota JE, Anderson WF, Coffey C, Califano J, Cozen W, Ferris RL, et al. Rising incidence of oral tongue cancer among white men and women in the United States, 1973–2012. Oral Oncol. 2017;67:146–52. https://doi.org/10.1016/j.oraloncology.2017.02.019.

Article  PubMed  Google Scholar 

Mohamed KM, Le A, Duong H, Wu Y, Zhang Q, Messadi DV. Correlation between VEGF and HIF-1α expression in human oral squamous cell carcinoma. Exp Mol Pathol. 2004;76(2):143–52.

Article  CAS  PubMed  Google Scholar 

Hoff CM, Grau C, Overgaard J. Effect of smoking on oxygen delivery and outcome in patients treated with radiotherapy for head and neck squamous cell carcinoma - a prospective study. Radiother Oncol. 2012;103(1):38–44. https://doi.org/10.1016/j.radonc.2012.01.011.

Article  PubMed  Google Scholar 

Rouger-Gaudichon J, Cousin E, Jakobczyk H, Debaize L, Rio AG, Forestier A, et al. Hypoxia regulates CD9 expression and dissemination of B lymphoblasts. Leuk Res [Internet]. 2022 Dec 1 [cited 2023 Oct 30] 123. Available from: https://pubmed.ncbi.nlm.nih.gov/36335655/

Wright MD, Moseley GW, van Spriel AB. Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens. 2004;64:533–42.

Article  CAS  PubMed  Google Scholar 

Hemler ME. Targeting of tetraspanin proteins-potential benefits and strategies. Nat Rev Drug Discov. 2008;7:747–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

H T Maecker1, S C Todd SL. The tetraspanin superfamily: molecular facilitators - PubMed. [cited 2023 Oct 30]; Available from: https://pubmed.ncbi.nlm.nih.gov/9194523/

Wang JC, Bégin LR, Bérubé NG, Chevalier S, Aprikian AG, Gourdeau H, et al. Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res. 2007;13(8):2354–61.

Article  CAS  PubMed  Google Scholar 

Tang M, Yin G, Wang F, Liu H, Zhou S, Ni J, et al. Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep. 2015;34(1):350–8.

Article  CAS  PubMed  Google Scholar 

Amornphimoltham P, Sriuranpong V, Patel V, Benavides F, Conti CJ, Sauk J, et al. Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01. Clin Cancer Res. 2004;10(12):4029–37.

Article  CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8.

Article  CAS  PubMed  Google Scholar 

Herr MJ, Mabry SE, Jennings LK. Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells. PLoS ONE. 2014;9(9):e10699.

Article  Google Scholar 

Nagaoka T, Kitaura K, Miyata Y, Kumagai K, Kaneda G, Kanazawa H, et al. Downregulation of epidermal growth factor receptor family receptors and ligands in a mutant K-ras group of patients with colorectal cancer. Mol Med Rep. 2016;13(4):3514–20.

Article  CAS  PubMed  Google Scholar 

Zhang J, Zhang LL, Shen L, Xu XM, Yu HG. Regulation of AKT gene expression by cisplatin. Oncol Lett. 2013;5(3):756–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manjappa AB, Rao S, Shetty S, Shetty V, Asode AS, Molahalli SS, et al. Characterization of human articular cartilage derived mesenchymal progenitor cells from osteoarthritis patients. J Adv Biotechnol Exp Ther. 2021;4(2):200–9.

Article  Google Scholar 

Lin Li, Shao-Hua Chen, Yu Zhang, Chao-Hui Yu, Shu-Dan Li YML. Is the hypoxia-inducible factor-1 alpha mRNA expression activated by ethanol-induced injury, the mechanism underlying alcoholic liver disease? - PubMed [Internet]. [cited 2023 Oct 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/17085342/

Michaud SE, Ménard C, Guy LG, Gennaro G, Rivard A. Inhibition of hypoxia-induced angiogenesis by cigarette smoke exposure: impairment of the HIF-1alpha/VEGF pathway. FASEB J. 2003;17(9):1150–2.

Article  CAS  PubMed  Google Scholar 

Lin PY, Yu CH, Wang JT, Chen HH, Cheng SJ, Kuo MYP, et al. Expression of hypoxia-inducible factor-1α is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. J Oral Pathol Med. 2008;37(1):18–25.

Article  PubMed  Google Scholar 

Jiang L, Hochwald S, Deng S, Zhu Y, Tan C, Zhong Q, et al. Evaluation of EGF, EGFR, and E-cadherin as potential biomarkers for gastrointestinal cancers. Front Lab Med. 2017;1(3):135–40. https://doi.org/10.1016/j.flm.2017.08.001.

Article  Google Scholar 

Tsalikidis C, Papachristou F, Pitiakoudis M, Asimakopoulos B, Trypsianis G, Bolanaki E, et al. Soluble E-cadherin as a diagnostic and prognostic marker in gastric carcinoma. Folia Med (Plovdiv). 2013;55(3–4):26–32.

Article  CAS  PubMed  Google Scholar 

Shernan GH, Michael RV, Kirk RS, Laura FN, Gabrielle M, Fiona H, Todd ED, Gregory MV, Arne S, Margaret LM, Sarah AC, Bruce RB, Angela P-M, and,. Circulating angiogenic factors associated with response and survival in patients with acute graft-versus-host disease. Biol Blood Marrow Transplant. 2016;176(1):139–48.

Google Scholar 

Maramotti S, Paci M, Manzotti G, Rapicetta C, Gugnoni M, Galeone C, et al. Soluble epidermal growth factor receptors (sEGFRs) in cancer: Biological aspects and clinical relevance. Int J Mol Sci. 2016;17(4):593.

Article  PubMed  PubMed Central  Google Scholar 

Heng H, Lingling G, Cun W, Yan L, Huiying M, Long C, Jie Q, Binbin L, Yinkun LCL. Lower serum soluble-EGFR is a potential biomarker for metastasis of HCC demonstrated by N-glycoproteomic analysis - PubMed [Internet]. [cited 2023 Oct 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/26105696/

Adamczyk KA, Klein-Scory S, Tehrani MM, Warnken U, Schmiegel W, Schnölzer M, et al. Characterization of soluble and exosomal forms of the EGFR released from pancreatic cancer cells. Life Sci. 2011;89(9–10):304–12. https://doi.org/10.1016/j.lfs.2011.06.020.

Article  CAS  PubMed  Google Scholar 

Singh B, Carpenter G, Coffey RJ. EGF receptor ligands: recent advances. Research. 2016;5:2270.

Google Scholar 

Fisher DA, Lakshmanan J. Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev. 1990;11:418–42.

Article  CAS  PubMed  Google Scholar 

Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5):52. https://doi.org/10.3390/cancers9050052.PMID:28513565;PMCID:PMC5447962.

Article  PubMed  Google Scholar 

Sato K-I. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci. 2013;14:10761–90.

Article  PubMed  PubMed Central  Google Scholar 

Morrison DK. MAP kinase pathways. Perspect Biol. 2012;4:a011254.

Google Scholar 

Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998;74:49–139.

Article  CAS  PubMed  Google Scholar 

Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 2015;25:545–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi JC, Wang J, Mandadi S, Tanaka K, Roufogalis BD, Madigan MC, et al. Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor. Blood. 2006;107(1):135–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotha J, Longhurst C, Appling W, Jennings LK. Tetraspanin CD9 regulates β1 integrin activation and enhances cell motility to fibronectin via a PI-3 kinase-dependent pathway. Exp Cell Res. 2008;314(8):1811–22.

Article  CAS  PubMed  Google Scholar 

Rappa G, Green TM, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6(10):7970–91.

Article  PubMed  PubMed Central  Google Scholar 

Yáñez-Mó M, Alfranca A, Cabañas C, Marazuela M, Tejedor R, Ursa MA, et al. Regulation of endothelial cell motility by complexes of retraspan molecules CD81/TAPA-1 and CD151/PETA-3 with α3β1 integrin localized at endothelial lateral junctions. J Cell Biol. 1998;141(3):791–804.

Article  PubMed  PubMed Central  Google Scholar 

Okochi H, Kato M, Nashiro K, Yoshie O, Miyazono K, Furue M. Expression of tetra-spans transmembrane family (CD9, CD37, CD53, CD63, CD81 and CD82) in normal and neoplastic human keratinocytes: an association of CD9 with α3β1 integrin. Br J Dermatol. 1997;137(6):856–63.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif