Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications

Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

Article  CAS  PubMed  Google Scholar 

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

Article  CAS  PubMed  Google Scholar 

Jiang W, Chan CK, Weissman IL, et al. Immune priming of the tumor microenvironment by radiation. Trends Cancer. 2016;2(11):638–45.

Article  PubMed  Google Scholar 

Li Y, Wan YY, Zhu B. Immune cell metabolism in tumor microenvironment. Adv Exp Med Biol. 2017;1011:163–96.

Article  CAS  PubMed  Google Scholar 

Tseng YH, Ho HL, Lai CR, et al. PD-L1 expression of tumor cells, macrophages, and immune cells in non-small cell lung cancer patients with malignant pleural effusion. J Thorac Oncol. 2018;13(3):447–53.

Article  CAS  PubMed  Google Scholar 

Shibaki R, Murakami S, Shinno Y, et al. Malignant pleural effusion as a predictor of the efficacy of anti-PD-1 antibody in patients with non-small cell lung cancer. Thorac Cancer. 2019;10(4):815–22.

Article  CAS  PubMed  Google Scholar 

Prado-Garcia H, Romero-Garcia S, Puerto-Aquino A, et al. The PD-L1/PD-1 pathway promotes dysfunction, but not “exhaustion”, in tumor-responding T cells from pleural effusions in lung cancer patients. Cancer Immunol Immunother. 2017;66(6):765–76.

Article  CAS  PubMed  Google Scholar 

Ghayumi MA, Mojtahedi Z, Fattahi MJ. Th1 and Th2 cytokine profiles in malignant pleural effusion. Iran J Immunol. 2011;8(4):195–200.

CAS  PubMed  Google Scholar 

Chen YM, Tsai CM, Whang-Peng J, et al. Interleukin-7 and interleukin-12 have different effects in rescue of depressed cellular immunity: comparison of malignant and tuberculous pleural effusions. J Interferon Cytokine Res. 2001;21(4):249–56.

Article  CAS  PubMed  Google Scholar 

Wu XZ, Zhai K, Yi FS, et al. IL-10 promotes malignant pleural effusion in mice by regulating TH 1- and TH 17-cell differentiation and migration. Eur J Immunol. 2019;49(4):653–65.

Article  CAS  PubMed  Google Scholar 

Zhai K, Shi XY, Yi FS, et al. IL-10 promotes malignant pleural effusion by regulating TH 1 response via an miR-7116-5p/GPR55/ERK pathway in mice. Eur J Immunol. 2020;50(11):1798–809.

Article  CAS  PubMed  Google Scholar 

Yuan G, Shixiong C. Review on CD4+ T cells in malignant pleural effusion. Cancer Res Prevent Treat. 2014;41(05):501–4.

Google Scholar 

Oshikawa K, Yanagisawa K, Ohno S, et al. Expression of ST2 in helper T lymphocytes of malignant pleural effusions. Am J Respir Crit Care Med. 2002;165(7):1005–9.

Article  PubMed  Google Scholar 

Yi F-S, Zhai K, Shi H-Z. Helper T cells in malignant pleural effusion. Cancer Lett. 2021;500:21–8.

Article  CAS  PubMed  Google Scholar 

Yang X-P, Ghoreschi K, Steward-Tharp SM, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12(3):247–54.

Article  CAS  PubMed  Google Scholar 

Ye Z-J, Zhou Q, Gu Y-Y, et al. Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol (Baltimore, Md: 1950). 2010;185(10):6348–54.

Article  CAS  Google Scholar 

Qin X-J, Shi H-Z, Deng J-M, et al. CCL22 recruits CD4-positive CD25-positive regulatory T cells into malignant pleural effusion. Clin Cancer Res. 2009;15(7):2231–7.

Article  CAS  PubMed  Google Scholar 

Lu Y, Lin H, Zhai K, et al. Interleukin-17 inhibits development of malignant pleural effusion via interleukin-9-dependent mechanism. Sci China Life Sci. 2016;59(12):1297–304.

Article  CAS  PubMed  Google Scholar 

Lu Y, Hong S, Li H, et al. Th9 cells promote antitumor immune responses in vivo. J Clin Invest. 2012;122(11):4160–71.

Article  CAS  PubMed  Google Scholar 

Lin H, Tong ZH, Xu QQ, et al. Interplay of Th1 and Th17 cells in murine models of malignant pleural effusion. Am J Respir Crit Care Med. 2014;189(6):697–706.

Article  CAS  PubMed  Google Scholar 

Niu Y, Ye L, Peng W, et al. IL-26 promotes the pathogenesis of malignant pleural effusion by enhancing CD4+IL-22+ T-cell differentiation and inhibiting CD8+ T-cell cytotoxicity. J Leukoc Biol. 2021;110(1):39–52.

Article  CAS  PubMed  Google Scholar 

Veldhoen M, Uyttenhove C, Van Snick J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6.

Article  CAS  PubMed  Google Scholar 

Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol. 2008;9(12):1347–55.

Article  CAS  PubMed  Google Scholar 

Ye Z-J, Zhou Q, Yin W, et al. Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am J Respir Crit Care Med. 2012;186(11):1168–79.

Article  CAS  PubMed  Google Scholar 

Bu XN, Zhou Q, Zhang JC, et al. Recruitment and phenotypic characteristics of interleukin 9-producing CD4+ T cells in malignant pleural effusion. Lung. 2013;191(4):385–9.

Article  CAS  PubMed  Google Scholar 

Elyaman W, Bradshaw EM, Uyttenhove C, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci USA. 2009;106(31):12885–90.

Article  CAS  PubMed  Google Scholar 

Miyazaki Y, Nakayamada S, Kubo S, et al. Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis. Front Immunol. 2018;9:2901.

Article  CAS  PubMed  Google Scholar 

Kryczek I, Lin Y, Nagarsheth N, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. 2014;40(5):772–84.

Article  CAS  PubMed  Google Scholar 

Zhang W, Chen Y, Wei H, et al. Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. Clin Cancer Res. 2008;14(20):6432–9.

Article  CAS  PubMed  Google Scholar 

Ye ZJ, Zhou Q, Yin W, et al. Interleukin 22-producing CD4+ T cells in malignant pleural effusion. Cancer Lett. 2012;326(1):23–32.

Article  CAS  PubMed  Google Scholar 

Gordy C, He YW. Endocytosis by target cells: an essential means for perforin- and granzyme-mediated killing. Cell Mol Immunol. 2012;9(1):5–6.

Article  PubMed  Google Scholar 

Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol. 2002;2(6):401–9.

Article  CAS  PubMed  Google Scholar 

Henkart PA. Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules. Immunity. 1994;1(5):343–6.

Article  CAS  PubMed  Google Scholar 

Lowin B, Hahne M, Mattmann C, et al. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 1994;370(6491):650–2.

Article  CAS  PubMed  Google Scholar 

Dhupar R, Okusanya OT, Eisenberg SH, et al. Characteristics of malignant pleural effusion resident CD8+ T cells from a heterogeneous collection of tumors. Int J Mol Sci. 2020;21(17):6178.

Article  CAS  PubMed  Google Scholar 

Prado-Garcia H, Romero-Garcia S, Aguilar-Cazares D, et al. Tumor-induced CD8+ T-cell dysfunction in lung cancer patients. Clin Dev Immunol. 2012;2012: 741741.

Article  PubMed  Google Scholar 

Ahmadzadeh M, Johnson LA, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Huang S, Gong D, et al. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol. 2010;7(5):389–95.

Article  PubMed  Google Scholar 

Waki K, Yamada T, Yoshiyama K, et al. PD

留言 (0)

沒有登入
gif