The monoaminergic pathways are involved in the antidepressant-like effect of quercetin

Abbas M, Subhan F, Rauf K, Khan M, Mohani N (2011) The involvement of biogenic amines in the antidepressant effect of Bacopa monnieri. Pharmacologyonline 1:112–123

Google Scholar 

Abbasi-Maleki S, Maleki SG (2021) Antidepressant-like effects of Foeniculum vulgare essential oil and potential involvement of dopaminergic and serotonergic systems on mice in the forced swim test. Pharma Nutr 15:100241. https://doi.org/10.1016/j.phanu.2020.100241

Article  Google Scholar 

Abreu TM, Monteiro VS, Martins ABS, Teles FB, da Conceição Rivanor RL, Mota ÉF, Macedo DS, de Vasconcelos SMM, Júnior JERH, Benevides NMB (2018) Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int J Biol Macromol 111:534–541

Article  CAS  PubMed  Google Scholar 

Adeoluwa AO, Aderibigbe OA, Agboola IO, Olonode TE, Ben-Azu B (2019) Butanol fraction of Olax Subscorpioidea produces antidepressant effect: evidence for the involvement of monoaminergic neurotransmission. Drug Res 69(1):53–60. https://doi.org/10.1055/a-0651-7939

Article  CAS  Google Scholar 

Adeoluwa OA, Aderibigbe AO, Bakre AG (2015) Evaluation of antidepressant-like effect of Olax Subscorpioidea Oliv. (Olacaceae) extract in mice. Drug Res 65(6):306–311. https://doi.org/10.1055/s-0034-1382010

Article  CAS  Google Scholar 

Alzahrani A, Alghamdi A, Alqarni T, Alshareef R, Alzahrani A (2019) Prevalence and predictors of depression, anxiety, and stress symptoms among patients with type II diabetes attending primary healthcare centers in western region of Saudi Arabia. Int J Ment Heal Syst 13(1):1–7

Google Scholar 

Babaei F, Mirzababaei M, Nassiri-Asl M (2018) Quercetin in food: possible mechanisms of its effect on memory. J Food Sci 83(9):2280–2287. https://doi.org/10.1111/1750-3841.14317

Article  CAS  PubMed  Google Scholar 

Bakre AG, Odusanya ST, Olowoparija SF, Ojo OR, Olayemi JO, Aderibigbe AO (2020) Behavioral and biochemical evidences for antidepressant activity of ethanol extract of Jatropha curcas in mice subjected to chronic unpredictable mild stress. J Biol Nat 11:1–10

CAS  Google Scholar 

Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20(12):1036–1046

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourin M, Poncelet M, Chermat R, Simon P (1983) The value of the reserpine test in psychopharmacology. Arzneim Forsch Drug Res 33(8):1173–1176

CAS  Google Scholar 

Brailovskaia J, Margraf J (2020) Relationship between depression symptoms, physical activity, and addictive social media use. Cyberpsychol Behav Soc Netw 23(12):818–822

Article  PubMed  Google Scholar 

Bukhari IA, Dar A (2013) Behavioral profile of Hypericum perforatum (St. John’s Wort) extract. A comparison with standard antidepressants in animal models of depression. Eur Rev Med Pharmacologic Sci 17(8):1082–1089

CAS  Google Scholar 

Celada P, Puig MV, Amargos-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatr Neurosci 29(4):252–265

Google Scholar 

Danysz W, Kostowski W, Kozak W, Hauptmann M (1998) On the role of noradrenergic neurotransmission in the action of desipramine and amitriptyline in animal models of depression. Pol J Pharmacol Pharm 38(3):285–298

Google Scholar 

D’Aquila PS, Collu M, Gessa GL, Serra G (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 405(1–3):365–373

Article  CAS  PubMed  Google Scholar 

Eduviere AT, Moke EG, Omogbiya AI, Otomewo LO, Olayinka JN, Aboyewa FE (2021) Quercetin modulates behavioural and biochemical alterations in stressed mice. Biosci Biotech Res Asia 18(4):681–689. https://doi.org/10.13005/bbra/2951

Article  Google Scholar 

El-Haroun H, Ewida SF, Mohamed WM, Bashandy MA (2021) Atypical antipsychotic Lumateperone effects on the adrenal gland with possible beneficial effect of quercetin co-administration. Front Physiol 12:674550. https://doi.org/10.3389/fphys.2021.674550

Article  PubMed  PubMed Central  Google Scholar 

Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 28(3):435–451

Article  CAS  PubMed  Google Scholar 

Fang K, Li HR, Chen XX, Gao XR, Huang LL, Du AQ, Jiang C, Li H, Ge JF (2020) Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of Copine 6 and TREM1/2 in the hippocampus and PFC. Front Pharmacol 10:1544. https://doi.org/10.3389/fphar.2019.01544

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fedotova IO (2012) Stimulation of D2-receptors improves passive avoidance learning in female rats. Patol Fiziol Eksp Ter 1:53–56

Google Scholar 

Gartlehner G, Gaynes BN, Amick HR, Asher G, Morgan LC, Coker-Schwimmer E, Forneris C, Boland E, Lux LJ, Gaylord S., Bann C, Pierl CB, Lohr KN Nonpharmacological versus pharmacological treatments for adult patients with major depressive disorder. Comparative Effectiveness Reviews No. 161.(Prepared by the RTI International-University of North Carolina Evidence-based Practice Center under Contract No. 290–2012–00008-I.) AHRQ Publication No. 15(16)-EHC031-EF. Rockville, MD: Agency for Healthcare Research and Quality; December 2015

Horowitz MA, Zunszain PA (2015) Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann NY Acad Sci 1351(1):68–79. https://doi.org/10.1111/nyas.12781

Article  CAS  PubMed  Google Scholar 

Institute for Quality and Efficiency in Health Care. (2006). InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); Depression: Overview. [Updated 2020 Jun 18]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279285/

Ishola IO, Agbaje EO, Akinleye MO, Ibeh CO, Adeyemi OO (2014) Antidepressant-like effect of the hydroethanolic leaf extract of Alchornea cordifolia (Schumach. & Thonn.) Mull. Arg. (Euphorbiaceae) in mice: involvement of monoaminergic system. J Ethnopharmacol 2(158):364–372

Article  Google Scholar 

Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS (2019) Fisetin and Quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9(5):174. https://doi.org/10.3390/biom9050174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaufman J, DeLorenzo C, Choudhury S, Parsey RV (2016) The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol 26(3):397–410

Article  CAS  PubMed  PubMed Central  Google Scholar 

Köhler S, Cierpinsky K, Kronenberg G, Adli M (2016) The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J Psychopharmacol 30(1):13–22

Article  PubMed  Google Scholar 

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients, 8(3)167 . https://doi.org/10.3390/nu8030167

Linde K, Sigterman K, Kriston L, Rucker G, Susanne J, Meissner K, Schneider A (2015) Effectiveness of psychological treatments for depressive disorders in primary care: systematic review and meta-analysis. Annals Fam Med 13(1):56–68

Article  Google Scholar 

Malick JB (1983) Potentiation of yohimbine-induced lethality in mice: predictor of antidepressant potential. Drug Dev Res 3:357–63

Article  CAS  Google Scholar 

Masuda Y, Ohnuma S, Sugiyama T (2001) Alpha 2-adrenoceptor activity induces the antidepressant-like glycolipid in mouse forced swimming. Methods Find Exp Clin Pharmacol 23(1):19–21

Article  CAS  PubMed  Google Scholar 

Mesram N, Nagapuri K, Banala RR, Nalagoni CR, Karnati PR (2017) Quercetin Treatment against NaF Induced Oxidative Stress Related Neuronal and Learning Changes in Developing Rats. J King Saud Univ - Sci 29(2):221–229. https://doi.org/10.1016/j.jksus.2016.04.002

Article  Google Scholar 

Millan MJ (2004) The role of monoamines in the actions of established and “novel” antidepressant agents: a critical review. Eur J Pharmacol 500(1–3):371–384

Article  CAS  PubMed  Google Scholar 

Montgomery SA (1999) Predicting response: Noradrenaline reuptake inhibition. Int Clin Psychopharmacol 14:21–26

Article  Google Scholar 

Nautiyal KM, Hen R (2017) Serotonin receptors in depression: from A to B. F1000Res 6(123):1–12

CAS  Google Scholar 

Onasanwo SA, Faborode SO, Ilenre KO (2016) Antidepressant-like potentials of Buchholzia coriacea seed extract: involvement of monoaminergic and cholinergic systems, and neuronal density in the hippocampus of adult mice. Nigerian J Physiologic Sci 31(1):93–99

CAS  Google Scholar 

Papakostas GI (2006) Dopaminergic-based pharmacotherapies for depression. Eur Neuropsychopharmacol 16(6):391–402

Article  CAS  PubMed  Google Scholar 

Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

CAS  PubMed  Google Scholar 

Quinton RM (1963) The increase in the toxicity of yohimbine induced by imipramine and other drugs in mice. Br J Pharmacol Chemother 21(1):51–66. https://doi.org/10.1111/j.1476-5381.1963.tb01501.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Şahin TD, Gocmez SS, Duruksu G, Yazir Y, Utkan T (2020) Resveratrol and quercetin attenuate depressive-like behavior and restore impaired contractility of vas deferens in chronic stress-exposed rats: involvement of oxidative stress and inflammation. Naunyn-Schmiedeberg’s Arch Pharmacol 393(5):761–775. https://doi.org/10.1007/s00210-019-01781-5

Article  CAS  Google Scholar 

Samad N, Saleem A, Yasmin F, Shehzad MA (2018) Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiol Res 67(5):795–808. https://doi.org/10.33549/physiolres.933776

Article  CAS  PubMed  Google Scholar 

Sanchez-Mateo CC, Bonkanka CX, Prado B, Rabanal RM (2007) Antidepressant activity of some Hypericum reflexum L. fil. Extracts in the forced swimming test in mice. J Ethnopharmacol 112:115–121

Article  CAS  PubMed  Google Scholar 

Steru L, Chermat R, Thierry B, Mico J, Lenegre A, Steru M, Simon P, Porsolt RD (1987) The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuro-Psychopharmacol Biol Psych 11(6):1–671

Article 

留言 (0)

沒有登入
gif