Protective effect of didymin against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced reproductive toxicity in male rats

Abdulkareem SM, Nanakali NM (2019) Quercetin reduces oxidative stress damage to reproductive profile induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in male albino rats (Rattus norvegicus L.). Appl Ecol Environ Res 17:13185–13197. https://doi.org/10.15666/aeer/1706_1318513197

Article  Google Scholar 

Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2–11. https://doi.org/10.1111/j.1600-0897.2007.00559.x

Article  CAS  PubMed  Google Scholar 

Aksu EH, Akman O, Özkaraca M, Ömür A, Ucar Ö (2015) Effect of Maclura Pomifera extract on cisplatin-induced damages in reproductive system of male rats. Kafkas Univ Vet Fak Derg 21:397–303. https://doi.org/10.9775/kvfd.2014.12662

Article  Google Scholar 

Ali MY, Zaib S, Rahman MM, Jannat S, Iqbal J, Park SK, Chang MS (2019) Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Chem Biol Interact 305:180–194. https://doi.org/10.1016/j.cbi.2019.03.018

Article  CAS  PubMed  Google Scholar 

Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH (2020) Understanding oxidants and antioxidants: classical team with new players. J Food Biochem 44:e13145. https://doi.org/10.1111/jfbc.13145

Article  PubMed  Google Scholar 

Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, Savardashtaki A (2022) Caspase-3: structure, function, and biotechnological aspects. Biotechnol Appl Biochem 69:1633–1645. https://doi.org/10.1002/bab.2233

Article  CAS  PubMed  Google Scholar 

Bisht S, Faiq M, Tolahunase M, Dada R (2017) Oxidative stress and male infertility. Nat Rev Urol 14:470–485. https://doi.org/10.1038/nrurol.2017.69

Article  CAS  PubMed  Google Scholar 

Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG (2017) Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: translating lessons from murine models. Reprod Toxicol 68:59–71. https://doi.org/10.1016/j.reprotox.2016.07.007

Article  CAS  PubMed  Google Scholar 

Cao Z, Shao B, Xu F, Liu Y, Li Y, Zhu Y (2017) Protective effect of selenium on aflatoxin B1-induced testicular toxicity in mice. Biol Trace Elem Res 180:233–238. https://doi.org/10.1007/s12011-017-0997-z

Article  CAS  PubMed  Google Scholar 

Carlberg I, Mannervik B (1975) Purification of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480. https://doi.org/10.1016/S0021-9258(19)41206-4

Article  CAS  PubMed  Google Scholar 

Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775. https://doi.org/10.1002/9780470110171.ch14

Article  Google Scholar 

Chen R, Sun G, Xu L, Zhang X, Zeng W, Sun X (2022) Didymin attenuates doxorubicin-induced cardiotoxicity by inhibiting oxidative stress. Chin Herb Med 14:70–78. https://doi.org/10.1016/j.chmed.2021.07.002

Article  PubMed  Google Scholar 

Czabotar PE, Garcia-Saez AJ (2023) Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol:1–17. https://doi.org/10.1038/s41580-023-00629-4

Dias MC, Pinto DC, Silva AM (2021) Plant flavonoids: chemical characteristics and biological activity. Molecules 26:5377. https://doi.org/10.3390/molecules26175377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dogan MF, Başak Türkmen N, Taşlıdere A, Şahin Y, Ciftci O (2022) The protective effects of capsaicin on oxidative damage-induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in rats. Drug Chem Toxicol 45:2463–2470. https://doi.org/10.1080/01480545.2021.1957912

Article  CAS  PubMed  Google Scholar 

Eleawa SM, Alkhateeb MA, Alhashem FH, Bin-Jaliah I, Sakr HF, Elrefaey HM, Elkarib AO, Alessa RM, Haidara MA, Shatoor AS et al (2014) Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression. J Reprod Dev 60:115–127. https://doi.org/10.1262/jrd.2013-097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsayed HY, Borroto ET, Pliego AB, Dibarrat JA, Ramirez FR, Chagoyán JC, Salas NP, Diaz-Albiter H (2019) Sperm quality in mouse after exposure to low doses of TCDD. Curr Top Med Chem 19:931–943. https://doi.org/10.2174/1568026619666190520090132

Article  CAS  PubMed  Google Scholar 

Eskenazi B, Warner M, Brambilla P, Signorini S, Ames J, Mocarelli P (2018) The Seveso accident: a look at 40 years of health research and beyond. Environ Int 121:71–84. https://doi.org/10.1016/j.envint.2018.08.051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faiad W, Soukkarieh C, Murphy DJ, Hanano A (2022) Effects of dioxins on animal spermatogenesis: a state-of-the-art review. Front Reprod Health 4:1009090. https://doi.org/10.3389/frph.2022.1009090

Article  PubMed  PubMed Central  Google Scholar 

Feng Z, Pang L, Chen S, Pang X, Huang Y, Qiao Q, Wang Y, Vonglorkham S, Huang Q, Lin X, Wei J (2020) Didymin ameliorates dexamethasone-induced non-alcoholic fatty liver disease by inhibiting TLR4/NF-κB and PI3K/Akt pathways in C57BL/6J mice. Int Immunopharmacol 88:107003. https://doi.org/10.1016/j.intimp.2020.107003

Ferlin A, Garolla A, Ghezzi M, Selice R, Palego P, Caretta N, Di Mambro A, Valente U, Ponce MD, Dipresa S et al (2021) Sperm count and hypogonadism as markers of general male health. Eur Urol Focus 7:205–213. https://doi.org/10.1016/j.euf.2019.08.001

Article  PubMed  Google Scholar 

Gallo A, Esposito MC, Tosti E, Boni R (2021) Sperm motility, oxidative status, and mitochondrial activity: exploring correlation in different species. Antioxidants 10:1131. https://doi.org/10.3390/antiox10071131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180. https://doi.org/10.1093/cvr/cvs116

Gaspari L, Paris F, Kalfa N, Soyer-Gobillard MO, Sultan C, Hamamah S (2021) Experimental evidence of 2, 3, 7, 8-tetrachlordibenzo-p-dioxin (TCDD) transgenerational effects on reproductive health. Int J Mol Sci 22:9091. https://doi.org/10.3390/ijms22169091

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibadullin R, Gubeidullina A, Vinogradov V, Glushko S, Petrova G (2020) The dioxin regulation criteria in the agro-industrial complex of Russia. BIO Web of Conf EDP Sci 17:00224. https://doi.org/10.1051/bioconf/20201700224

Article  Google Scholar 

Hayashi I, Morishita Y, Imai K, Nakamura M, Nakachi K, Hayashi T (2007) High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutat Res Genet Toxicol Environ Mutagen 631:55–61. https://doi.org/10.1016/j.mrgentox.2007.04.006

Article  CAS  Google Scholar 

Huang Q, Bai F, Nie J, Lu S, Lu C, Zhu X, Zhuo L, Lin X (2017) Didymin ameliorates hepatic injury through inhibition of MAPK and NF-κB pathways by up-regulating RKIP expression. Int Immunopharmacol 42:130–138. https://doi.org/10.1016/j.intimp.2016.11.028

Article  CAS  PubMed  Google Scholar 

Hung JY, Hsu YL, Ko YC, Tsai YM, Yang CJ, Huang MS, Kuo PL (2010) Didymin, a dietary flavonoid glycoside from citrus fruits, induces Fas-mediated apoptotic pathway in human non-small-cell lung cancer cells in vitro and in vivo. LUNG CA 68:366–374. https://doi.org/10.1016/j.lungcan.2009.08.013

Article  Google Scholar 

Ijaz MU, Haider S, Tahir A, Afsar T, Almajwal A, Amor H, Razak S (2023) Mechanistic insight into the protective effects of fisetin against arsenic-induced reproductive toxicity in male rats. Sci Rep 13:3080. https://doi.org/10.1038/s41598-023-30302-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ijaz MU, Tahir A, Samad A, Anwar H (2021) Nobiletin ameliorates nonylphenol-induced testicular damage by improving biochemical, steroidogenic, hormonal, spermatogenic, apoptotic and histological profile. Hum Exp Toxicol 40:403–416. https://doi.org/10.1177/0960327120950007

Article  CAS  PubMed  Google Scholar 

Islam MN, Rauf A, Fahad FI, Emran TB, Mitra S, Olatunde A, Shariati MA, Rebezov M, Rengasamy KR, Mubarak MS (2022) Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit Rev Food Sci Nutr 62:7282–7300. https://doi.org/10.1080/10408398.2021.1913400

Article  PubMed  Google Scholar 

Jackson E, Shoemaker R, Larian N, Cassis L (2017) Adipose tissue as a site of toxin accumulation. Compr Physiol 7:1085–1135. https://doi.org/10.1002/cphy.c160038

Article  PubMed  PubMed Central  Google Scholar 

Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L (2020) Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 8:703–718. https://doi.org/10.1016/S2213-8587(20)30129-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

CAS  PubMed  Google Scholar 

Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K, Kaczyńska K (2021) Mitochondrial oxidative stress—a causative factor and therapeutic target in many diseases. Int J Mol Sci 22:13384. https://doi.org/10.3390/ijms222413384

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai KP, Wong MH, Wong CK (2005) Inhibition of CYP450scc expression in dioxin-exposed rat Leydig cells. Int J Endocrinol 185:519–527. https://doi.org/10.1677/joe.1.06054

Article 

留言 (0)

沒有登入
gif