Lung Organoids: Systematic Review of Recent Advancements and its Future Perspectives

Gkatzis K, Taghizadeh S, Huh D, Stainier DYR, Bellusci S. Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J. 2018;52:1800876.

Article  CAS  PubMed  Google Scholar 

Holm S. Time to reconsider stem cell ethics—the importance of induced pluripotent cells. J Med Ethics. 2008;34:63–4.

Article  PubMed  Google Scholar 

Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21:571–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141:502–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demchenko A, Lavrov A, Smirnikhina S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res. 2022;390:317–33.

Article  PubMed  PubMed Central  Google Scholar 

Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen Y. Human pluripotent stem cell-derived lung organoids: potential applications in development and disease modeling. Wiley Interdiscip Rev Dev Biol. 2021;10:399.

Article  Google Scholar 

Choi J, Iich E, Lee JH. Organogenesis of adult lung in a dish: differentiation, disease and therapy. Dev Biol. 2016;420:278–86.

Article  CAS  PubMed  Google Scholar 

Vazquez-Armendariz AI, Herold S. From clones to buds and branches: the use of lung organoids to model branching morphogenesis ex vivo. Front Cell Dev Biol. 2021;9:631579.

Article  PubMed  PubMed Central  Google Scholar 

Alvarado A, Arce I. Metabolic functions of the lung, disorders and associated pathologies. J Clin Med Res. 2016;8:689–700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Courtney Broaddus MV. Murray & Nadel’s Textbook of Respiratory Medicine. Amsterdam: Elsevier; 2010.

Google Scholar 

Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14:518–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller AJ, Spence JR. In vitro models to study human lung development, disease and homeostasis. Physiology. 2017;32:246–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dye BR, Hill DR, Ferguson MAH, Tsai YH, Nagy MS, Dyal R, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 2015;4:05098.

Article  Google Scholar 

Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

Article  CAS  PubMed  Google Scholar 

Choi J, Park JE, Tsagkogeorga G, Yanagita M, Koo BY, Han N, et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell. 2020;27:366–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507:190–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest. 2011;121:2855–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517:621–5.

Article  CAS  PubMed  Google Scholar 

Louie SM, Moye AL, Wong IG, Lu E, Shehaj A, Garcia-de-Alba C, et al. Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Rep. 2022;39:110662.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiner AI, Jackson SR, Zhao G, Quansah KK, Farshchian JN, Neupauer KM, et al. Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: steps toward cell-based regenerative therapies. NPJ Regen Med. 2019;4:17.

Article  PubMed  PubMed Central  Google Scholar 

Winkler AS, Cherubini A, Rusconi F, Santo N, Madaschi L, Pistoni C, et al. Human airway organoids and microplastic fibers: a new exposure model for emerging contaminants. Environ Int. 2022;163:107200.

Article  CAS  PubMed  Google Scholar 

Moisés J, Navarro A, Santasusagna S, Viñolas N, Molins L, Ramirez J, et al. NKX2–1 expression as a prognostic marker in early-stage non-small-cell lung cancer. BMC Pulm Med. 2017;17:197.

Article  PubMed  PubMed Central  Google Scholar 

Schlingmann B, Molina SA, Koval M. Claudins: gatekeepers of lung epithelial function. Semin Cell Dev Biol. 2015;42:47–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hermans C, Bernard A. Lung epithelium–specific proteins: characteristics and potential applications as markers. Am J Respir Crit Care Med. 1999;159:646–78.

Article  CAS  PubMed  Google Scholar 

Kuroki Y, Voelker DR. Pulmonary surfactant proteins. J Biol Chem. 1994;269:25943–6.

Article  CAS  PubMed  Google Scholar 

Sehlmeyer K, Ruwisch J, Roldan N, Lopez-Rodriguez E. Alveolar dynamics and beyond–the importance of surfactant protein C and cholesterol in lung homeostasis and fibrosis. Front Physiol. 2020;11:386.

Article  PubMed  PubMed Central  Google Scholar 

Ota C, Ng-Blichfeldt JP, Korfei M, Alsafadi HN, Lehmann M, Skronska-Wasek W, et al. Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Sci Rep. 2018;8:12983.

Article  PubMed  PubMed Central  Google Scholar 

Hewitt RJ, Puttur F, Gaboriau DCA, Fercoq F, Fresquet M, Traves WJ, et al. Lung extracellular matrix modulates KRT5+ basal cell activity in pulmonary fibrosis. Nat Commun. 2023;14:6039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo W, Zhang T, An Wu DZ, Guan SP, Liew AA, Yamamoto Y, et al. p63+ Krt5+ distal airway stem cells are essential for lung regeneration. Nature. 2015;517:616–20.

Article  CAS  PubMed  Google Scholar 

Lee JH, McDonald MLN, Cho MH, Wan ES, Castaldi PJ, Hunninghake GM, et al. DNAH5 is associated with total lung capacity in chronic obstructive pulmonary disease. Respir Res. 2014;15:97.

Article  PubMed  PubMed Central  Google Scholar 

Veerapaneni VV, Upadhyay S, Thimraj TA, Siddaiah JB, Krishnarao CS, Lokesh KS, et al. Circulating secretoglobin family 1A member 1 (SCGB1A1) levels as a marker of biomass smoke induced chronic obstructive pulmonary disease. Toxics. 2021;9:208.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. Int Rev Cell Mol Biol. 2013;303:139–202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frank DB, Peng T, Zepp JA, Snitow M, Vincent TL, Penkala IJ, et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep. 2016;17:2312–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell. 2017;20:844–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, Ng-Blichfeldt JP, Ota C, Ciminieri C, Ren W, Hiemstra PS, et al. Wnt/β-catenin signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis and emphysema. Stem Cells. 2020;38:1467–78.

Article  CAS  PubMed  Google Scholar 

Li C, Peinado N, Smith SM, Zhou J, Gao F, Kohbodi G, et al. Wnt5a promotes AT1 and represses AT2 lineage-specific gene expression in a cell-context-dependent manner. Stem Cells. 2022;40:691–703.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif