Anexelekto (AXL) no more: microRNA-155 (miR-155) controls the “Uncontrolled” in SARS-CoV-2

Worldodometer. https://www.worldometers.info/coronavirus/. Accessed 2023–11–22 2023.

Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):233. https://doi.org/10.1038/s41392-021-00653-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei M, Ma Y, Chen H, Huang P, Sun J, Wang X, et al. Emerging SARS-CoV-2 variants of concern potentially expand host range to chickens: insights from AXL, NRP1 and ACE2 receptors. Virol J. 2023;20(1):196. https://doi.org/10.1186/s12985-023-02123-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papadopoulos KI, Papadopoulou A, Aw TC. A protective erythropoietin evolutionary landscape, NLRP3 inflammasome regulation, and multisystem inflammatory syndrome in children. Hum Cell. 2023;36(1):26–40. https://doi.org/10.1007/s13577-022-00819-w.

Article  CAS  PubMed  Google Scholar 

Papadopoulos KI, Papadopoulou A, Aw TC. Beauty and the beast: host microRNA-155 versus SARS-CoV-2. Hum Cell. 2023;36(3):908–22. https://doi.org/10.1007/s13577-023-00867-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papadopoulos KI, Sutheesophon W, Manipalviratn S, Aw TC. Age and genotype dependent erythropoietin protection in COVID-19. World J Stem Cells. 2021;13(10):1513–29. https://doi.org/10.4252/wjsc.v13.i10.1513.

Article  PubMed  PubMed Central  Google Scholar 

Wang S, Qiu Z, Hou Y, Deng X, Xu W, Zheng T, et al. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 2021;31(2):126–40. https://doi.org/10.1038/s41422-020-00460-y.

Article  CAS  PubMed  Google Scholar 

Ghosh RS. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. Int Rev Cell Mol Biol. 2020;357:81–122. https://doi.org/10.1016/bs.ircmb.2020.09.003.

Article  CAS  Google Scholar 

Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153. https://doi.org/10.1186/s12943-019-1090-3.

Article  PubMed  PubMed Central  Google Scholar 

Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8(5):327–36. https://doi.org/10.1038/nri2303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goyette MA, Côté JF. AXL receptor tyrosine kinase as a promising therapeutic target directing multiple aspects of cancer progression and metastasis. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14030466.

Article  PubMed  PubMed Central  Google Scholar 

Perera-Lecoin M, Meertens L, Carnec X, Amara A. Flavivirus entry receptors: an update. Viruses. 2013;6(1):69–88. https://doi.org/10.3390/v6010069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharyya S, Zagórska A, Lew ED, Shrestha B, Rothlin CV, Naughton J, et al. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe. 2013;14(2):136–47. https://doi.org/10.1016/j.chom.2013.07.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer. 2017;116(4):415–23. https://doi.org/10.1038/bjc.2016.428.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravichandran KS. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity. 2011;35(4):445–55. https://doi.org/10.1016/j.immuni.2011.09.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimojima M, Ikeda Y, Kawaoka Y. The mechanism of Axl-mediated Ebola virus infection. J Infect Dis. 2007;196(Suppl 2):S259–63. https://doi.org/10.1086/520594.

Article  CAS  PubMed  Google Scholar 

Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol. 2006;80(20):10109–16. https://doi.org/10.1128/jvi.01157-06.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. Expression analysis highlights axl as a candidate zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016;18(5):591–6. https://doi.org/10.1016/j.stem.2016.03.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohan D, Van Ert H, Ruggio N, Rogers KJ, Badreddine M, Aguilar Briseño JA, et al. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog. 2021;17(11): e1009743. https://doi.org/10.1371/journal.ppat.1009743.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe. 2012;12(4):544–57. https://doi.org/10.1016/j.chom.2012.08.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ning K, Zou W, Xu P, Cheng F, Zhang EY, Zhang-Chen A, et al. Identification of AXL as a co-receptor for human parvovirus B19 infection of human erythroid progenitors. Sci Adv. 2023;9(2):eade0869. https://doi.org/10.1126/sciadv.ade0869.

Article  PubMed  PubMed Central  Google Scholar 

Rizzi M, Tonello S, D’Onghia D, Sainaghi PP. Gas6/TAM Axis Involvement in modulating inflammation and fibrosis in covid-19 patients. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24020951.

Article  PubMed  PubMed Central  Google Scholar 

Boytz R, Słabicki M, Ramaswamy S, Patten JJ, Zou C, Meng C, et al. Anti-SARS-CoV-2 activity of targeted kinase inhibitors: repurposing clinically available drugs for COVID-19 therapy. J Med Virol. 2023;95(1): e28157. https://doi.org/10.1002/jmv.28157.

Article  CAS  PubMed  Google Scholar 

Papadopoulos KI, Wattanaarsakit P, Prasongchean W, Narain R. 10 - Gene therapies in clinical trials. In: Narain R, editor. polymers and nanomaterials for gene therapy. Woodhead Publishing; 2016. p. 231–56.

Chapter  Google Scholar 

Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microrna-mrna interactome. Front Genet. 2019;10:933. https://doi.org/10.3389/fgene.2019.00933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra R, Kumar A, Ingle H, Kumar H. The interplay between viral-derived mirnas and host immunity during infection. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2019.03079.

Article  PubMed  PubMed Central  Google Scholar 

Papadopoulos KI, Papadopoulou A, Aw TC. MicroRNA-155 mediates endogenous angiotensin II type 1 receptor regulation: implications for innovative type 2 diabetes mellitus management. World J Diabetes. 2023;14(9):1334–40. https://doi.org/10.4239/wjd.v14.i9.1334.

Article  PubMed  PubMed Central  Google Scholar 

Masaki T, Arend KC, Li Y, Yamane D, McGivern DR, Kato T, et al. miR-122 stimulates hepatitis C virus RNA synthesis by altering the balance of viral RNAs engaged in replication versus translation. Cell Host Microbe. 2015;17(2):217–28. https://doi.org/10.1016/j.chom.2014.12.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schult P, Roth H, Adams RL, Mas C, Imbert L, Orlik C, et al. microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat Commun. 2018;9(1):2613. https://doi.org/10.1038/s41467-018-05053-3.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kalkusova K, Taborska P, Stakheev D, Smrz D. The role of mir-155 in antitumor immunity. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14215414.

Article  PubMed  PubMed Central  Google Scholar 

Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, et al. Dissecting mirna-gene networks to map clinical utility roads of pharmacogenomics-guided therapeutic decisions in cardiovascular precision medicine. Cells. 2022;11(4):607.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortez MA, Anfossi S, Ramapriyan R, Menon H, Atalar SC, Aliru M, et al. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosom Cancer. 2019;58(4):244–53. https://doi.org/10.1002/gcc.22725.

Article  CAS  PubMed  Google Scholar 

Hou Y, Wang J, Wang X, Shi S, Wang W, Chen Z. Appraising microrna-155 as a noninvasive diagnostic biomarker for cancer detection: a

留言 (0)

沒有登入
gif