Made to order: emergency myelopoiesis and demand-adapted innate immune cell production

Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

Article  CAS  PubMed  Google Scholar 

Schoedel, K. B. et al. The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 128, 2285–2296 (2016).

Article  CAS  PubMed  Google Scholar 

Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

Article  CAS  PubMed  Google Scholar 

Kang, Y. A., Pietras, E. M. & Passegue, E. Deregulated notch and Wnt signaling activates early-stage myeloid regeneration pathways in leukemia. J. Exp. Med. 217, e20190787 (2020).

Article  Google Scholar 

Sommerkamp, P. et al. Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells. Blood 137, 3218–3224 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

Article  ADS  CAS  PubMed  Google Scholar 

Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

Article  CAS  PubMed  Google Scholar 

Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).

Article  ADS  CAS  PubMed  Google Scholar 

Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

Article  ADS  CAS  PubMed  Google Scholar 

Muller-Sieburg, C. E., Whitlock, C. A. & Weissman, I. L. Isolation of two early B lymphocyte progenitors from mouse marrow: a committed pre-pre-B cell and a clonogenic Thy-1-lo hematopoietic stem cell. Cell 44, 653–662 (1986).

Article  CAS  PubMed  Google Scholar 

Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muller-Sieburg, C. E., Cho, R. H., Karlsson, L., Huang, J. F. & Sieburg, H. B. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103, 4111–4118 (2004).

Article  CAS  PubMed  Google Scholar 

Muller-Sieburg, C. E., Cho, R. H., Thoman, M., Adkins, B. & Sieburg, H. B. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100, 1302–1309 (2002).

Article  CAS  PubMed  Google Scholar 

Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

Article  CAS  PubMed  Google Scholar 

Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

Article  CAS  PubMed  Google Scholar 

Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

Article  ADS  CAS  PubMed  Google Scholar 

Dong, F. et al. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nat. Cell Biol. 22, 630–639 (2020).

Article  CAS  PubMed  Google Scholar 

Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

Article  ADS  CAS  PubMed  Google Scholar 

Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018). This study uses single-cell transplantation techniques to reveal distinct patterns of lineage bias among HSCs, which are stable upon serial transplantation.

Article  ADS  CAS  PubMed  Google Scholar 

Bowling, S. et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1693–1694 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583, 585–589 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

Article  CAS  PubMed  Google Scholar 

Kang, Y. A. et al. Secretory MPP3 reinforce myeloid differentiation trajectory and amplify myeloid cell production. J. Exp. Med. 220, e20230088 (2023). This study identifies FcγR+MPP3 cells as a self-reinforcing bypass mechanism for GMP amplification in inflammation and cancer.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haas, S. et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17, 422–434 (2015). This study identifies a bypass mechanism by which HSCs can contribute directly to the megakaryocyte lineage under inflammatory conditions.

Article  CAS  PubMed  Google Scholar 

Morcos, M. N. F. et al. Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis. Nat. Commun. 13, 4504 (2022).

Article  ADS  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif