GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice

Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, et al. A Review of Gaucher Disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:441.

Article  Google Scholar 

Rosenbloom BE, Weinreb NJ. Gaucher Disease: a comprehensive review. Crit Rev Oncog [Internet]. 2013 [cited 2023 May 19];18. Available from: https://www.dl.begellhouse.com/journals/439f422d0783386a,0dc6d82859623d4b,3b64a9681182c9cf.html.

Dandana A, Ben Khelifa S, Chahed H, Miled A, Ferchichi S. Gaucher Disease: clinical, biological and therapeutic aspects. Pathobiology. 2015;83:13–23.

Article  Google Scholar 

Schiffmann R, Sevigny J, Rolfs A, Davies EH, Goker-Alpan O, Abdelwahab M, et al. The definition of neuronopathic Gaucher disease. J Inherit Metab Dis. 2020;43:1056–9.

Article  Google Scholar 

Sidransky E. Gaucher Disease: insights from a rare mendelian disorder. Discov Med. 2012;14:273–81.

Google Scholar 

Orvisky E, Park J k, Parker A, Walker J m, Martin B m, Stubblefield B k, et al. The identification of eight novel glucocerebrosidase (GBA) mutations in patients with Gaucher disease. Hum Mutat. 2002;19:458–9.

Article  CAS  Google Scholar 

Schueler UH, Kolter T, Kaneski CR, Blusztajn JK, Herkenham M, Sandhoff K, et al. Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: a model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol Dis. 2003;14:595–601.

Article  CAS  Google Scholar 

Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab. 2004;82:192–207.

Article  CAS  Google Scholar 

Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet. 2011;20:1375–86.

Article  CAS  Google Scholar 

Farfel-Becker T, Vitner EB, Kelly SL, Bame JR, Duan J, Shinder V, et al. Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet. 2014;23:843–54.

Article  CAS  Google Scholar 

Stoker TB, Torsney KM, Barker RA. Pathological mechanisms and clinical aspects of GBA1 mutation-associated Parkinson’s Disease. In: Stoker TB, Greenland JC, editors. Park Dis Pathog Clin Asp [Internet]. Brisbane (AU): Codon Publications; 2018 [cited 2023 Feb 20]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK536716/

Alaei MR, Tabrizi A, Jafari N, Mozafari H. Gaucher Disease: new expanded classification emphasizing neurological features. Iran J Child Neurol. 2019;13:7–24.

Google Scholar 

Gan-Or Z, Giladi N, Rozovski U, Shifrin C, Rosner S, Gurevich T, et al. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology. 2008;70:2277–83.

Article  CAS  Google Scholar 

Blumenreich S, Jenkins BJ, Barav OB, Milenkovic I, Futerman AH. The Lysosome and Nonmotor Symptoms: linking Parkinson’s Disease and lysosomal storage disorders. Mov Disord. 2020;35:2150–5.

Article  Google Scholar 

Pitcairn C, Wani WY, Mazzulli JR. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson’s disease. Neurobiol Dis. 2019;122:72–82.

Article  CAS  Google Scholar 

Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, et al. Mitochondria and quality control defects in a mouse model of Gaucher Disease—Links to Parkinson’s Disease. Cell Metab. 2013;17:941–53.

Article  CAS  Google Scholar 

Rocha EM, Smith GA, Park E, Cao H, Graham A-R, Brown E, et al. Sustained systemic glucocerebrosidase inhibition induces brain α-synuclein aggregation, microglia and complement C1q activation in mice. Antioxid Redox Signal. 2015;23:550–64.

Article  CAS  Google Scholar 

Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, et al. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet. 2015;24:5775–88.

Article  CAS  Google Scholar 

Schöndorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.

Article  Google Scholar 

Mazzulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher’s Disease Glucocerebrosidase and <alpha>-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.

Article  CAS  Google Scholar 

Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26:1049–55.

Article  Google Scholar 

Soria FN, Engeln M, Martinez-Vicente M, Glangetas C, López-González MJ, Dovero S, et al. Glucocerebrosidase deficiency in dopaminergic neurons induces microglial activation without neurodegeneration. Hum Mol Genet. 2017;26:2603–15.

Article  CAS  Google Scholar 

Conradi NG, Sourander P, Nilsson O, Svennerholm L, Erikson A. Neuropathology of the Norrbottnian type of Gaucher disease. Acta Neuropathol (Berl). 1984;65:99–109.

Article  CAS  Google Scholar 

Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 kinase inhibition rescues deficits in lysosome function due to heterozygous GBA1 expression in human iPSC-derived neurons. Front Neurosci. 2020;14:442.

Article  Google Scholar 

Aflaki E, Stubblefield BK, McGlinchey RP, McMahon B, Ory DS, Sidransky E. A characterization of Gaucher iPS-derived astrocytes: Potential implications for Parkinson’s disease. Neurobiol Dis. 2020;134: 104647.

Article  CAS  Google Scholar 

Brunialti E, Villa A, Mekhaeil M, Mornata F, Vegeto E, Maggi A, et al. Inhibition of microglial β-glucocerebrosidase hampers the microglia-mediated antioxidant and protective response in neurons. J Neuroinflammation. 2021;18:220.

Article  CAS  Google Scholar 

Boddupalli CS, Nair S, Belinsky G, Gans J, Teeple E, Nguyen T-H, et al. Neuroinflammation in neuronopathic Gaucher disease: Role of microglia and NK cells, biomarkers, and response to substrate reduction therapy. Zaidi M, editor eLife. 2022;11:e79830.

CAS  Google Scholar 

Wang L, Lin G, Zuo Z, Li Y, Byeon SK, Pandey A, et al. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Sci Adv. 8:eabn3326.

Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in development, myelin generation and beyond. Cells. 2019;8:1424.

Article  CAS  Google Scholar 

Meschkat M, Steyer AM, Weil M-T, Kusch K, Jahn O, Piepkorn L, et al. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun. 2022;13:1163.

Article  CAS  Google Scholar 

Edgar JM, McGowan E, Chapple KJ, Möbius W, Lemgruber L, Insall RH, et al. Río-Hortega’s drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin. J Anat. 2021;239:1241–55.

Article  CAS  Google Scholar 

Kang H, Zhang M, Ouyang M, Guo R, Yu Q, Peng Q, et al. Brain white matter microstructural alterations in children of type I Gaucher disease characterized with diffusion tensor MR imaging. Eur J Radiol. 2018;102:22–9.

Article  Google Scholar 

Davies EH, Seunarine KK, Banks T, Clark CA, Vellodi A. Brain white matter abnormalities in paediatric Gaucher Type I and Type III using diffusion tensor imaging. J Inherit Metab Dis. 2011;34:549–53.

Article  Google Scholar 

Aronson SM, Volk BW. Cerebral Sphingolipidoses: a symposium on Tay-Sachs’ Disease and allied disorders. Elsevier; 2013. p. 1–474. ISBN: 9781483221519.

Bohnen NI, Albin RL. White matter lesions in Parkinson disease. Nat Rev Neurol. 2011;7:229–36.

Article  Google Scholar 

Enquist IB, Nilsson E, Ooka A, Månsson J-E, Olsson K, Ehinger M, et al. Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci U S A. 2006;103:13819–24.

Article  CAS  Google Scholar 

Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33:366–74.

Article  CAS  Google Scholar 

Chen P, Cescon M, Megighian A, Ronaldo P. Collagen VI regulates peripheral nerve myelination and function. FASEB J. 2014;28:1145–56.

Article  CAS  Google Scholar 

Jung M, Krämer E, Grzenkowski M, Tang K, Blakemore W, Aguzzi A, et al. Lines of murine oligodendroglial precursor cells immortalized by an activated neu tyrosine kinase show distinct degrees of interaction with axons in vitro and in vivo. Eur J Neurosci. 1995;7:1245–65.

Article  CAS  Google Scholar 

Trotter J, Bitter-Suermann D, Schachner M. Differentiation-regulated loss of the polysialylated embryonic form and expression of the different polypeptides of the neural cell adhesion molecule by cultured oligodendrocytes and myelin. J Neurosci Res. 1989;22:369–83.

Article  CAS  Google Scholar 

Zoupi L, Savvaki M, Kalemaki K, Kalafatakis I, Sidiropoulou K, Karagogeos D. The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia. 2018;66:576–91.

Article  Google Scholar 

Sasaki A, Arawaka S, Sato H, Kato T. Sensitive western blotting for detection of endogenous Ser129-phosphorylated α-synuclein in intracellular and extracellular spaces. Sci Rep. 2015;5:14211.

Article  Google Scholar 

Thetiot M, Freeman SA, Desmazières A. Immunohistochemical analysis of myelin structures. In: Woodhoo A, editor. Myelin Methods Protoc. New York, NY: Springer; 2018. p. 15–23.

Chapter  Google Scholar 

He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, et al. Chd7 Cooperates with Sox10 and Regulates the Onset of CNS Myelination and Remyelination. Nat Neurosci. 2016;19:678–89.

Article  CAS  Google Scholar 

de Faria O, Dhaunchak AS, Kamen Y, Roth AD, Kuhlmann T, Colman DR, et al. TMEM10 promotes oligodendrocyte differentiation and is expressed by oligodendrocytes in human remyelinating multiple sclerosis plaques. Sci Rep. 2019;9:3606.

Article  Google Scholar 

Prolo LM, Vogel H, Reimer RJ. The lysosomal sialic acid transporter sialin is required for normal CNS myelination. J Neurosci. 2009;29:15355–65.

Article  CAS  Google Scholar 

García-Mateo N, Pascua-Maestro R, Pérez-Castellanos A, Lillo C, Sanchez D, Ganfornina MD. Myelin extracellular leaflet compaction requires apolipoprotein D membrane management to optimize lysosomal-dependent recycling and glycocalyx removal. Glia. 2018;66:670–87.

Article  Google Scholar 

Magalhaes J, Gegg ME, Migdalska-Richards A, Doherty MK, Whitfield PD

留言 (0)

沒有登入
gif