Gene association analysis to determine the causal relationship between immune cells and juvenile idiopathic arthritis

Johnson K, Gardner-Medwin J. Childhood arthritis: classification and radiology. Clin Radiol. 2002;57(1):47–58. https://doi.org/10.1053/crad.2001.0732.

Article  PubMed  Google Scholar 

Zaripova LN, Midgley A, Christmas SE, Beresford MW, Baildam EM, Oldershaw RA. Juvenile idiopathic arthritis: from aetiopathogenesis to therapeutic approaches. Pediatr Rheumatol Online J. 2021;19(1):135. https://doi.org/10.1186/s12969-021-00629-8.

Article  PubMed  PubMed Central  Google Scholar 

Bansal N, Pasricha C, Kumari P, Jangra S, Kaur R, Singh R. A comprehensive overview of juvenile idiopathic arthritis: from pathophysiology to management. Autoimmun Rev. 2023;22(7):103337. https://doi.org/10.1016/j.autrev.2023.103337.

Article  PubMed  Google Scholar 

Prakken B, Albani S, Martini A. Juvenile idiopathic arthritis. Lancet. 2011;377(9783):2138–49. https://doi.org/10.1016/S0140-6736(11)60244-4.

Article  PubMed  Google Scholar 

Kasper M, Walscheid K, Laffer B, Bauer D, Busch M, Loser K, et al. Phenotype of innate immune cells in uveitis associated with axial Spondyloarthritis- and juvenile idiopathic arthritis-associated uveitis. Ocul Immunol Inflamm. 2021;29(6):1080–9. https://doi.org/10.1080/09273948.2020.1715449.

Article  CAS  PubMed  Google Scholar 

Zhang W, Cai Z, Liang D, Han J, Wu P, Shan J, et al. Immune cell-related genes in juvenile idiopathic arthritis identified using transcriptomic and single-cell sequencing data. Int J Mol Sci. 2023;24(13):10619. https://doi.org/10.3390/ijms241310619.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martini A, Lovell DJ, Albani S, Brunner HI, Hyrich KL, Thompson SD, et al. Juvenile idiopathic arthritis. Nat Rev Dis Primers. 2022;8(1):5. https://doi.org/10.1038/s41572-021-00332-8.

Article  PubMed  Google Scholar 

Schmidt T, Berthold E, Arve-Butler S, Gullstrand B, Mossberg A, Kahn F, et al. Children with oligoarticular juvenile idiopathic arthritis have skewed synovial monocyte polarization pattern with functional impairment-a distinct inflammatory pattern for oligoarticular juvenile arthritis. Arthritis Res Ther. 2020;22(1):186. https://doi.org/10.1186/s13075-020-02279-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Macaubas C, Nguyen K, Milojevic D, Park JL, Mellins ED. Oligoarticular and polyarticular JIA: epidemiology and pathogenesis. Nat Rev Rheumatol. 2009;5(11):616–26. https://doi.org/10.1038/nrrheum.2009.209.

Article  PubMed  PubMed Central  Google Scholar 

Corcione A, Ferlito F, Gattorno M, Gregorio A, Pistorio A, Gastaldi R, et al. Phenotypic and functional characterization of switch memory B cells from patients with oligoarticular juvenile idiopathic arthritis. Arthritis Res Ther. 2009;11(5):R150. https://doi.org/10.1186/ar2824.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spelling P, Bonfá E, Caparbo VF, Pereira RM. Osteoprotegerin/RANKL system imbalance in active polyarticular-onset juvenile idiopathic arthritis: a bone damage biomarker? Scand J Rheumatol. 2008;37(6):439–44. https://doi.org/10.1080/03009740802116224.

Article  CAS  PubMed  Google Scholar 

Wojdas M, Dąbkowska K, Winsz-Szczotka K. Alterations of extracellular matrix components in the course of juvenile idiopathic arthritis. Metabolites. 2021;11(3):132. https://doi.org/10.3390/metabo11030132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ventura-Ríos L, Faugier E, Barzola L, De la Cruz-Becerra LB, Sánchez-Bringas G, García AR, et al. Reliability of ultrasonography to detect inflammatory lesions and structural damage in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2018;16(1):58. https://doi.org/10.1186/s12969-018-0275-4.

Article  PubMed  PubMed Central  Google Scholar 

Li M, Pezzolesi MG. Advances in understanding the genetic basis of diabetic kidney disease. Acta Diabetol. 2018;55(11):1093–104. https://doi.org/10.1007/s00592-018-1193-0.

Article  PubMed  Google Scholar 

Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925–6. https://doi.org/10.1001/jama.2017.17219.

Article  PubMed  Google Scholar 

Li Y, Li Q, Cao Z, Wu J. The causal association of polyunsaturated fatty acids with allergic disease: a two-sample Mendelian randomization study. Front Nutr. 2022;9(9):962787. https://doi.org/10.3389/fnut.2022.962787.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–45. https://doi.org/10.1038/s41588-020-0684-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sidore C, Busonero F, Maschio A, Porcu E, Naitza S, Zoledziewska M, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47(11):1272–81. https://doi.org/10.1038/ng.3368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai J, He L, Wang H, Rong X, Chen M, Shen Q, et al. Genetic liability for prescription opioid use and risk of cardiovascular diseases: a multivariable Mendelian randomization study. Addiction. 2022;117(5):1382–91. https://doi.org/10.1111/add.15767.

Article  PubMed  Google Scholar 

Choi KW, Chen CY, Stein MB, Klimentidis YC, Wang MJ, Koenen KC, et al. Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Assessment of Bidirectional Relationships Between Physical Activity and Depression Among Adults: A 2-Sample Mendelian Randomization Study. JAMA Psychiatry. 2019;76(4):399–408. https://doi.org/10.1001/jamapsychiatry.2018.4175.

Article  PubMed  PubMed Central  Google Scholar 

Slob EAW, Burgess S. A comparison of robust Mendelian randomization methods using summary data. Genet Epidemiol. 2020;44(4):313–29. https://doi.org/10.1002/gepi.22295.

Article  PubMed  PubMed Central  Google Scholar 

Yeung CHC, Au Yeung SL, Kwok MK, Zhao JV, Schooling CM. The influence of growth and sex hormones on risk of alzheimer's disease: a mendelian randomization study. Eur J Epidemiol. 2023;38(7):745–55. https://doi.org/10.1007/s10654-023-01015-2.

Article  PubMed  Google Scholar 

Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14. https://doi.org/10.1002/gepi.21965.

Article  PubMed  PubMed Central  Google Scholar 

Greco MFD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–40. https://doi.org/10.1002/sim.6522.

Article  MathSciNet  Google Scholar 

Leah E. Rheumatoid arthritis: metabolic reprogramming of T cells in RA. Nat Rev Rheumatol. 2013 Nov;9(11):635. https://doi.org/10.1038/nrrheum.2013.158.

Article  PubMed  Google Scholar 

Maldonado A, Mueller YM, Thomas P, Bojczuk P, O'Connors C, Katsikis PD. Decreased effector memory CD45RA+ CD62L- CD8+ T cells and increased central memory CD45RA- CD62L+ CD8+ T cells in peripheral blood of rheumatoid arthritis patients. Arthritis Res Ther. 2003;5(2):R91–6. https://doi.org/10.1186/ar619.

Article  PubMed  PubMed Central  Google Scholar 

Sottini A, Imberti L, Gorla R, et al. Restricted expression of T cell receptor V but not V genes in rheumatoid arthritis. Eur J Immunol. 2010;21:461–6.

Article  Google Scholar 

Yang G, Tang K, Qiao L, Li Y, Sun S. Identification of critical genes and lncRNAs in Osteolysis after Total hip arthroplasty and osteoarthritis by RNA sequencing. Biomed Res Int. 2021;13(2021):6681925. https://doi.org/10.1155/2021/6681925.

Article  CAS  Google Scholar 

Appay V, Douek DC, Price DA. CD8+ T cell efficacy in vaccination and disease. Nat Med. 2008;14(6):623–8. https://doi.org/10.1038/nm.f.1774.

Article  CAS  PubMed  Google Scholar 

Kalia A, Agrawal M, Gupta N. CD8+ T cells are crucial for humoral immunity establishment by SA14-14-2 live attenuated Japanese encephalitis vaccine in mice. Eur J Immunol. 2021;51(2):368–79. https://doi.org/10.1002/eji.202048745.

Article  CAS  PubMed  Google Scholar 

Xiong G, Lei T, Dong S, Xu L, Li M, Wang R. Roles of CD3, CD4 and CD8 in synovial lymphocytes of rheumatoid arthritis. Pol J Pathol. 2022;73(1):21–6. https://doi.org/10.5114/pjp.2022.117173.

Article  PubMed  Google Scholar 

Prelog M, Schwarzenbrunner N, Tengg E, Sailer-Höck M, Kern H, Zimmerhackl LB, et al. Quantitative alterations of CD8+ T cells in juvenile idiopathic arthritis patients in remission. Clin Rheumatol. 2009;28(4):385–9. https://doi.org/10.1007/s10067-008-1057-z.

Article  PubMed  Google Scholar 

Bulatović Ćalasan M, Vastert SJ, Scholman RC, Verweij F, Klein M, Wulffraat NM, et al. Methotrexate treatment affects effector but not regulatory T cells in juvenile idiopathic arthritis. Rheumatology (Oxford). 2015;54(9):1724–34.

留言 (0)

沒有登入
gif