AMPK activation attenuates central sensitization in a recurrent nitroglycerin-induced chronic migraine mouse model by promoting microglial M2-type polarization

Ashina M, Katsarava Z, Do TP, Buse DC, Pozo-Rosich P, Özge A et al (2021) Migraine: epidemiology and systems of care. Lancet 397(10283):1485–1495. https://doi.org/10.1016/S0140-6736(20)32160-7. PMID: 33773613

Article  PubMed  Google Scholar 

GBD 2019 Diseases and Injuries Collaborators (2020) Diseases. Lancet. 396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9. PMID 33069326

Article  Google Scholar 

Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z, Lifting The Burden: the Global Campaign against Headache (2020) Migraine remains second among the world’s causes of disability, and first among young women: findings from GBD2019. J Headache Pain. 21(1):137. https://doi.org/10.1186/s10194-020-01208-0. PMID 33267788

Article  CAS  PubMed  PubMed Central  Google Scholar 

(2018) Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38(1):1–211. https://doi.org/10.1177/0333102417738202. PMID: 29368949

Andreou AP, Edvinsson L (2019) Mechanisms of migraine as a chronic evolutive condition. J Headache Pain 20(1):117. https://doi.org/10.1186/s10194-019-1066-0. PMID: 31870279

Article  PubMed  PubMed Central  Google Scholar 

Dodick D, Silberstein S (2006) Central sensitization theory of migraine: clinical implications. Headache 46(Suppl 4):S182–S191. https://doi.org/10.1111/j.1526-4610.2006.00602.x. PMID17078850

Article  PubMed  Google Scholar 

Edvinsson L, Haanes KA, Warfvinge K (2019) Does inflammation have a role in migraine? Nat Rev Neurol 15(8):483–490. https://doi.org/10.1038/s41582-019-0216-y. PMID: 31263254

Article  PubMed  Google Scholar 

Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787. https://doi.org/10.1038/nri3086. PMID: 22025055

Article  CAS  PubMed  Google Scholar 

Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053. PMID: 31585077

Article  CAS  PubMed  Google Scholar 

Liu L, Xu Y, Dai H, Tan S, Mao X, Chen Z (2020) Dynorphin activation of kappa Opioid receptor promotes microglial polarization toward M2 phenotype via TLR4/NF-κB pathway. Cell Biosci 10:42. https://doi.org/10.1186/s13578-020-00387-2. PMID: 32206297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sudershan A, Younis M, Sudershan S, Kumar P (2023) Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol Res 45(3):200–215. https://doi.org/10.1080/01616412.2022.2129774. PMID: 36197286

Article  CAS  PubMed  Google Scholar 

Thuraiaiyah J, Erritzøe-Jervild M, Al-Khazali HM, Schytz HW, Younis S (2022) The role of cytokines in migraine: a systematic review. Cephalalgia 42(14):1565–1588. https://doi.org/10.1177/03331024221118924. PMID: 35962530

Article  PubMed  Google Scholar 

Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H (2021) Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain 22(1):55. https://doi.org/10.1186/s10194-021-01271-1. PMID: 34112082

Article  PubMed  PubMed Central  Google Scholar 

Jing F, Zou Q, Wang Y, Cai Z, Tang Y (2021) Activation of microglial GLP-1R in the trigeminal nucleus caudalis suppresses central sensitization of chronic migraine after recurrent nitroglycerin stimulation. J Headache Pain 22(1):86. https://doi.org/10.1186/s10194-021-01302-x. PMID: 34325647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbiroli B, Montagna P, Cortelli P, Funicello R, Iotti S, Monari L et al (1992) Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42(6):1209–1214. https://doi.org/10.1212/wnl.42.6.1209. PMID: 1603349

Article  CAS  PubMed  Google Scholar 

Lodi R, Kemp GJ, Montagna P, Pierangeli G, Cortelli P, Iotti S et al (1997) Quantitative analysis of skeletal muscle bioenergetics and proton efflux in migraine and cluster headache. J Neurol Sci 146(1):73–80. https://doi.org/10.1016/s0022-510x(96)00287-0. PMID: 9077499

Article  CAS  PubMed  Google Scholar 

Lodi R, Montagna P, Soriani S, Iotti S, Arnaldi C, Cortelli P et al (1997) Deficit of brain and skeletal muscle bioenergetics and low brain magnesium in juvenile migraine: an in vivo 31P magnetic resonance spectroscopy interictal study. Pediatr Res 42(6):866–871. https://doi.org/10.1203/00006450-199712000-00024. PMID: 9396571

Article  CAS  PubMed  Google Scholar 

Schulz UG, Blamire AM, Corkill RG, Davies P, Styles P, Rothwell PM (2007) Association between cortical metabolite levels and clinical manifestations of migrainous aura: an MR-spectroscopy study. Brain 130(12):3102–3110. https://doi.org/10.1093/brain/awm165. PMID: 17956910

Article  CAS  PubMed  Google Scholar 

Welch KM, Levine SR, D’Andrea G, Schultz LR, Helpern JA (1989) Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy. Neurology 39(4):538–541. https://doi.org/10.1212/wnl.39.4.538. PMID: 2927679

Article  CAS  PubMed  Google Scholar 

Reyngoudt H, Paemeleire K, Descamps B, De Deene Y, Achten E (2011) 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia 31(12):1243–1253. https://doi.org/10.1177/0333102410394675. PMID: 21289000

Article  PubMed  Google Scholar 

Lisicki M, D’Ostilio K, Coppola G, Scholtes F, de Maertens Noordhout A, Parisi V et al (2018) Evidence of an increased neuronal activation-to-resting glucose uptake ratio in the visual cortex of migraine patients: a study comparing (18) FDG-PET and visual evoked potentials. J Headache Pain. 19(1):49. https://doi.org/10.1186/s10194-018-0877-8. PMID: 29978429

Article  PubMed  PubMed Central  Google Scholar 

Gross EC, Lisicki M, Fischer D, Sándor PS, Schoenen J (2019) The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol 15(11):627–643. https://doi.org/10.1038/s41582-019-0255-4. PMID: 31586135

Article  CAS  PubMed  Google Scholar 

Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95. PMID: 28974774

Article  CAS  PubMed  Google Scholar 

Xu X, Ding G, Liu C, Ding Y, Chen X, Huang X et al (2022) Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function. Cell Res 32(1):54–71. https://doi.org/10.1038/s41422-021-00565-y. PMID: 34561619

Article  CAS  PubMed  Google Scholar 

Xiang HC, Lin LX, Hu XF, Zhu H, Li HP, Zhang RY et al (2019) AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J Neuroinflammation 16(1):34. https://doi.org/10.1186/s12974-019-1411-x. PMID: 30755236

Article  PubMed  PubMed Central  Google Scholar 

Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 229(2):558–65. https://doi.org/10.1111/j.1432-1033.1995.tb20498.x. PMID: 7744080

Article  CAS  PubMed  Google Scholar 

Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK (1994) Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353(1):33–36. https://doi.org/10.1016/0014-5793(94)01006-4. PMID: 7926017

Article  CAS  PubMed  Google Scholar 

Achanta LB, Thomas DS, Housley GD, Rae CD (2023) AMP-activated protein kinase activators have compound and concentration-specific effects on brain metabolism. J Neurochem. https://doi.org/10.1111/jnc.15815. PMID: 36977628

Article  PubMed  Google Scholar 

Hill JL, Kobori N, Zhao J, Rozas NS, Hylin MJ, Moore AN et al (2016) Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. J Neurochem 139(1):106–119. https://doi.org/10.1111/jnc.13726. PMID: 27379837

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prasad R, Giri S, Nath N, Singh I, Singh AK (2006) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside attenuates experimental autoimmune encephalomyelitis via modulation of endothelial-monocyte interaction. J Neurosci Res 84(3):614–625. https://doi.org/10.1002/jnr.20953. PMID: 16770773

Article  CAS  PubMed  Google Scholar 

Yu HY, Cai YB, Liu Z (2015) Activation of AMPK improves lipopolysaccharide-induced dysfunction of the blood-brain barrier in mice. Brain Inj 29(6):777–784. https://doi.org/10.3109/02699052.2015.1004746. PMID: 25794165

Article  PubMed  Google Scholar 

Fu L, Huang L, Cao C, Yin Q, Liu J (2016) Inhibition of AMP-activated protein kinase alleviates focal cerebral ischemia injury in mice: interference with mTOR and autophagy. Brain Res 1650:103–111. https://doi.org/10.1016/j.brainres.2016.08.035. PMID: 27569585

Article  CAS  PubMed  Google Scholar 

Ammar RA, Mohamed AF, Kamal MM, Safar MM, Abdelkader NF (2022) Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: role of AMPK/SIRT1 signaling and NLRP3 inflammasome. Inflammopharmacology 30(3):919–934. https://doi.org/10.1007/s10787-022-00956-6. PMID: 35364735

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif