The Role of the Serotonin Pathway of Tryptophan Metabolism in the Development of Neuroinflammation in Alzheimer’s Disease

Abg Abd Wahab, D.Y., Gau, C.H., Zakaria, R., Muthu Karuppan, M.K., A-Rahbi, B.S., Abdullah, Z., Alrafiah, A., Abdullah, J.M., and Muthuraju, S., Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour, Biomed. Res. Int., 2019, vol. 2019, p. 1767203. PMID: 31815123; PMCID: PMC6877979. https://doi.org/10.1155/2019/1767203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agüero, P., Sainz, M.J., García-Ayllón, M.S., Sáez-Valero, J., Téllez, R., Guerrero-López, R., Pérez-Pérez, J., Jimenéz-Escrig, A., and Gómez-Tortosa, E., α‑Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer’s disease, Alzheimers Res. Ther., 2020, vol. 12, no. 1, p. 139. PMID: 33129344; PMCID: PMC7603780. https://doi.org/10.1186/s13195-020-00708-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alghamdi, B.S., The neuroprotective role of melatonin in neurological disorders, J. Neurosci. Res., 2018, vol. 96, no. 7, pp. 1136–1149. PMID: 29498103; PMCID: PMC6001545. https://doi.org/10.1002/jnr.24220

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, G., Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub, Int. J. Mol. Sci., 2022, vol. 24, no. 1, p. 350. PMID: 36613794; PMCID: PMC9820523. https://doi.org/10.3390/ijms24010350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews, P.W., Bosyj, C., Brenton, L., Green, L., Gasser, P.J., Lowry, C.A., and Pickel, V.M., All the brain’s a stage for serotonin: The forgotten story of serotonin diffusion across cell membranes, Proc. Biol. Sci., 2022, vol. 289, no. 1986, p. 20221565. PMID: 36321487; PMCID: PMC9627707. https://doi.org/10.1098/rspb.2022.1565

Chakraborty, S., Lennon, J.C., Malkaram, S.A., Zeng, Y., Fisher, D.W., and Dong, H., Serotonergic system, cognition, and BPSD in Alzheimer’s disease, Neurosci. Lett., 2019, vol. 704, pp. 36–44.https://doi.org/10.1016/j.neulet.2019.03.050

Chen, D., Zhang, T., and Lee, T.H., Cellular mechanisms of melatonin: Insight from neurodegenerative diseases, Biomolecules, 2020, vol. 10, no. 8, p. 1158. PMID: 32784556; PMCID: PMC7464852. https://doi.org/10.3390/biom10081158

Article  PubMed  PubMed Central  Google Scholar 

Correia, A.S. and Vale, N., Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways, Int. J. Mol. Sci., 2022, vol. 23, no. 15, p. 8493. PMID: 35955633; PMCID: PMC9369076. https://doi.org/10.3390/ijms23158493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fakhoury, M., Microglia and astrocytes in Alzheimer’s disease: Implications for therapy, Curr. Neuropharmacol., 2018, vol. 16, no. 5, pp. 508–518. PMID: 28730967; PMCID: PMC5997862. https://doi.org/10.2174/1570159X15666170720095240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan, R., Peng, X., Xie, L., Dong, K., Ma, D., Xu, W., Shi, X., Zhang, S., Chen, J., Yu, X., and Yang, Y., Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: Mechanisms and interventions, Aging Cell, 2022, vol. 21, no. 10, p. e13704. PMID: 36056774; PMCID: PMC9577946. https://doi.org/10.1111/acel.13704

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fanet, H., Capuron, L., Castanon, N., Calon, F., and Vancassel, S., Tetrahydrobioterin (BH4) pathway: From metabolism to neuropsychiatry, Curr. Neuropharmacol., 2021, vol. 19, no. 5, pp. 591–609. PMID: 32744952; PMCID: PMC8573752. https://doi.org/10.2174/1570159X18666200729103529

Gao, K., Mu, C.L., Farzi, A., and Zhu, W.Y., Tryptophan metabolism: A link between the gut microbiota and brain, Adv. Nutr., 2020, vol. 11, no. 3, pp. 709–723. PMID: 31825083; PMCID: PMC7231603. https://doi.org/10.1093/advances/nmz127

Article  PubMed  Google Scholar 

Grifka-Walk, H.M., Jenkins, B.R., and Kominsky, D.J., Amino acid Trp: The far out impacts of host and commensal tryptophan metabolism, Front. Immunol., 2021, vol. 12, p. 653208. PMID: 34149693; PMCID: PMC8213022. https://doi.org/10.3389/fimmu.2021.653208

Article  CAS  PubMed  PubMed Central  Google Scholar 

Homolak, J., Mudrovčić, M., Vukić, B., Toljan, K., Circadian, rhythm and Alzheimer’s disease, Med. Sci. (Basel), 2018, vol. 6, no. 3, p. 52. PMID: 29933646; PMCID: PMC6164904. https://doi.org/10.3390/medsci6030052

Article  CAS  PubMed  Google Scholar 

Jayamohananan, H., Manoj Kumar, M.K., and Aneesh, T.P., 5-HIAA as a potential biological marker for neurological and psychiatric disorders, Adv. Pharm. Bull., 2019, vol. 9, no. 3, pp. 374–381. PMID: 31592064; PMCID: PMC6773935. https://doi.org/10.15171/apb.2019.044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan, S., Barve, K.H., and Kumar, M.S., Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease, Curr. Neuropharmacol., 2020, vol. 18, no. 11, pp. 1106–1125. PMID: 32484110; PMCID: PMC7709159. https://doi.org/10.2174/1570159X18666200528142429

Lee, B.H., Hille, B., and Koh, D.S., Serotonin modulates melatonin synthesis as an autocrine neurotransmitter in the pineal gland, Proc. Natl. Acad. Sci. U.S.A., 2021, vol. 118, no. 43, p. e2113852118. PMID: 34675083; PMCID: PMC8639368. https://doi.org/10.1073/pnas.2113852118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, D., Yu, S., Long, Y., Shi, A., Deng, J., Ma, Y., Wen, J., Li, X., Liu, S., Zhang, Y., Wan, J., Li, N., and Ao, R., Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders, Front. Immunol., 2022, vol. 13, p. 985378. PMID: 36159806; PMCID: PMC9496178. https://doi.org/10.3389/fimmu.2022.985378

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Zhang, J., Wan, J., Liu, A., and Sun, J., Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease, Biomed. Pharmacother., 2020, vol. 132, p. 110887. PMID: 33254429. https://doi.org/10.1016/j.biopha.2020.110887

Article  CAS  PubMed  Google Scholar 

Luo, F., Sandhu, A.F., Rungratanawanich, W., Williams, G.E., Akbar, M., Zhou, S., Song, B.J., and Wang, X., Melatonin and autophagy in aging-related neurodegenerative diseases, Int. J. Mol. Sci., 2020, vol. 21, no. 19, p. 7174. PMID: 32998479; PMCID: PMC7584015. https://doi.org/10.3390/ijms21197174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, C., Hong, F., and Yang, S., Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions, Molecules, 2022, vol. 27, no. 4, p. 1210. PMID: 35209007; PMCID: PMC8876037. https://doi.org/10.3390/molecules27041210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melhuish Beaupre, L.M., Brown, G.M., Gonçalves, V.F., and Kennedy, J.L., Melatonin’s neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders, Transl. Psychiatry, 2021, vol. 11, no. 1, p. 339. PMID: 34078880; PMCID: PMC8172874. https://doi.org/10.1038/s41398-021-01464-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Modoux, M., Rolhion, N., Mani, S., and Sokol, H., Tryptophan metabolism as a pharmacological target, Trends Pharmacol. Sci., 2021, vol. 42, no. 1, pp. 60–73. PMID: 33256987. https://doi.org/10.1016/j.tips.2020.11.006

Article  CAS  PubMed  Google Scholar 

Nikolaev, G., Robeva, R., and Konakchieva, R., Membrane melatonin receptors activated cell signaling in physiology and disease, Int. J. Mol. Sci., 2021, vol. 23, no. 1, p. 471. PMID: 35008896; PMCID: PMC8745360.https://doi.org/10.3390/ijms23010471

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrus, P., Cervantes, M., Samad, M., et al., Tryptophan metabolism is a physiological integrator regulating circadian rhythms, Mol. Metab., 2022, vol. 64, p. 101556. PMID: 35914650; PMCID: PMC9382333. https://doi.org/10.1016/j.molmet.2022.101556

Sabir, M.S., Haussler, M.R., Mallick, S., Kaneko, I., Lucas, D.A., Haussler, C.A., Whitfield, G.K., and Jurutka, P.W., Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines, Genes Nutr., 2018, vol. 13, p. 19. PMID: 30008960; PMCID: PMC6042449. https://doi.org/10.1186/s12263-018-0605-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sacramento, P.M., Monteiro, C., Dias, A.S.O., Kasahara, T.M., Ferreira, T.B., Hygino, J., Wing, A.C., Andrade, R.M., Rueda, F., Sales, M.C., Vasconcelos, C.C., and Bento, C.A.M., Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T-cell subsets in multiple sclerosis patients, Eur. J. Immunol., 2018, vol. 48, no. 8, pp. 1376–1388. PMID: 29719048. https://doi.org/10.1002/eji.201847525

Article  CAS  PubMed  Google Scholar 

Savonije, K. and Weaver, D.F., The role of tryptophan metabolism in Alzheimer’s disease, Brain Sci., 2023, vol. 13, no. 2, p. 292. PMID: 36831835; PMCID: PMC9954102. https://doi.org/10.3390/brainsci13020292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scotton, W.J., Hill, L.J., Williams, A.C., and Barnes, N.M., Serotonin syndrome: Pathophysiology, clinical features, management, and potential future directions, Int. J. Tryptophan Res., 2019, vol. 12, p. 1178646919873925. PMID: 31523132; PMCID: PMC6734608. https://doi.org/10.1177/1178646919873925

Article  PubMed  PubMed Central  Google Scholar 

Singh, A., Ansari, V.A., Mahmood, T., Ahsan, F., and Wasim, R., Neurodegeneration: Microglia: Nf-Kappab signaling pathways, Drug Res., 2022, vol. 72, no. 9, pp. 496–499. PMID: 36055286. https://doi.org/10.1055/a-1915-4861

Article  CAS  Google Scholar 

Song, J., Pineal gland dysfunction in Alzheimer’s disease: Relationship with the immune–pineal axis, sleep disturbance, and neurogenesis, Mol. Neurodegener., 2019, vol. 14, no. 1, p. 28. PMID: 31296240; PMCID: PMC6624939. https://doi.org/10.1186/s13024-019-0330-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan, M., Ding, L., Wang, D., Han, J., and Gao, P., Serotonin: A potent immune cell modulator in autoimmune diseases, Front. Immunol., 2020, vol. 11, p. 186. PMID: 32117308; PMCID: PMC7026253. https://doi.org/10.3389/fimmu.2020.00186

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winn, S.R., Scherer, T., Thöny, B., Ying, M., Martinez, A., Weber, S., Raber, J., and Harding, C.O., Blood phenylalanine reduction corrects CNS dopamine and serotonin deficiencies and partially improves behavioral performance in adult phenylketonuric mice, Mol. Genet. Metab., 2018, vol. 123, no. 1, p. 6–20. PMID: 29331172; PMCID: PMC5786171. https://doi.org/10.1016/j.ymgme.2017.10.009

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif