Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., and Weickenmeier, J., Brain aging mechanisms with mechanical manifestations, Mech. Ageing Dev., 2021, vol. 200, p. 111575.https://doi.org/10.1016/j.mad.2021.111575
Bogolepova, A.N., Vasenina, E.E., Gomzyakova, N.A., Gusev, E.I., Dudchenko, N.G., Emelin, A.Yu., Zalutskaya, N.M., Isaev, R.I., Kotovskaya, Yu.V., Levin, O.S., Litvinenko, I.V., Lobzin, V.Yu., Martynov, M.Yu., Mkhitaryan, E.A., Neznanov, N.G., Palchikova, E.I., Tkacheva, O.N., Cherdak, M.A., Chimagomedova, A.Sh., and Yakhno, N.N., Clinical guidelines for cognitive disorders in elderly and older patients, Zh. Nevr. Psikhiatr. im. S.S. Korsakova, 2021, vol. 121, no. 10–3, pp. 6–137. https://doi.org/10.17116/jnevro20211211036
Salthouse, T.A., Trajectories of normal cognitive aging, Psychol. Aging, 2019, vol. 34, no. 1, pp. 17–24. https://doi.org/10.1037/pag0000288
Beker, N., Ganz, A., Hulsman, M., Klausch, T., Schmand, B.A., Scheltens, P., Sikkes, S.A.M., and Holstege, H., Association of cognitive function trajectories in centenarians with postmortem neuropathology, physical health, and other risk factors for cognitive decline, JAMA Netw. Open, 2021, vol. 4, no. 1, p. e2031654. https://doi.org/10.1001/jamanetworkopen.2020.31654
Article PubMed PubMed Central Google Scholar
Satz, P., Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory, Neuropsychology, 1993, vol. 7, no. 3, pp. 273–295.
Stern, Y., Barnes, C.A., Grady, C., Jones, R.N., and Raz, N., Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging, 2019, vol. 83, pp. 124–129.https://doi.org/10.1016/j.neurobiolaging.2019.03.022
Article PubMed PubMed Central Google Scholar
Koberskaya, N.N. and Tabeea, G.R., The modern concept of cognitive reserve, in Nevrologiya, neiropsikhiatriya, psikhosomatika, 2019, vol. 11, no. 1, pp. 96–102. https://doi.org/10.14412/2074‑2711‑2019‑1‑96‑102
Caspi, Y., Brouwer, R.M., Schnack, H.G., van de Nieuwenhuijzen, M.E., Cahn, W., Kahn, R.S., Niessen, W.J., van der Lugt, A., and Pol, H.H., Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study, Neuroimage, 2020, vol. 220, p. 116842. https://doi.org/10.1016/j.neuroimage.2020.116842
de Rooij, S.R., Are brain and cognitive reserve shaped by early life circumstances?, Front. Neurosci., 2022, vol. 16, p. 825811. https://doi.org/10.3389/fnins.2022.825811
Article PubMed PubMed Central Google Scholar
Gluckman, P.D., Hanson, M.A., Morton, S.M., and Pinal, C.S., Life-long echoesa critical analysis of the developmental origins of adult disease model, Biol. Neonate., 2005, vol. 87, no. 2, pp. 127–139. https://doi.org/10.1159/000082311
Raikkonen, K., Kajantie, E., Pesonen, A.K., Heinonen, K., Alastalo, H., Leskinen, J.T., Nyman, K., Henriksson, M., Lahti, J., Lahti, M., Pyhälä, R., Tuovinen, S., Osmond, C., Barker, D.J., and Eriksson, J.G., Early life origins cognitive decline: Findings in elderly men in the Helsinki Birth Cohort Study, PLoS One, 2013, vol. 8, no. 1, p. e54707. https://doi.org/10.1371/journal.pone.0054707
Article ADS CAS PubMed PubMed Central Google Scholar
Gould, E., Reeves, A.J., Graziano, M.S., and Gross, C.G., Neurogenesis in the neocortex of adult primates, Science, 1999, vol. 286, no. 5439, pp. 548–552. https://doi.org/10.1126/science.286.5439.548
Article CAS PubMed Google Scholar
Maccora, J., Peters, R., and Anstey, K.J., What does (low) education mean in terms of dementia risk? A systematic review and meta-analysis highlighting inconsistency in measuring and operationalising education, SSM Popul. Health, 2020, vol. 12, p. 100654. https://doi.org/10.1016/j.ssmph.2020.100654
Article PubMed PubMed Central Google Scholar
Tani, Y., Fujiwara, T., and Kondo, K., Association between adverse childhood experiences and dementia in older Japanese adults, JAMA Netw. Open, 2020, vol. 3, no. 2, p. e1920740. https://doi.org/10.1001/jamanetworkopen.2019.20740
Lundgren, E.M. and Tuvemo, T., Effects of being born small for gestational age on long-term intellectual performance, Best Pract. Res. Clin. Endocrinol. Metab., 2008, vol. 22, no. 3, pp. 477–488. https://doi.org/10.1016/j.beem.2008.01.014
Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Vendrell, P., Rami, L., Clemente, I.C., Bosch, B., Villar, A., Bargalló, N., Jurado, M.A., Barrios, M., and Molinuevo, J.L., Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease, Neurobiol. Aging, 2009, vol. 30, no. 7, pp. 1114–1124. https://doi.org/10.1016/j.neurobiolaging.2007.10.008
Article CAS PubMed Google Scholar
Piras, F., Cherubini, A., Caltagirone, C., and Spalletta, G., Education mediates microstructural changes in bilateral hippocampus, Hum. Brain Map., 2011, vol. 32, no. 2. pp. 282–289. https://doi.org/10.1002/hbm.21018
Zijlmans, J.L., Lamballais, S., Lahousse, L., Vernooij, M.W., Ikram, M.K., Ikram, M.A., and Luik, A.I., The interaction of cognitive and brain reserve with frailty in the association with mortality: An observational cohort study, Lancet Healthy Longev., 2021, vol. 2, no. 4, pp. e194–e201. https://doi.org/10.1016/S2666-7568(21)00028-3
Nogueira, J., Gerardo, B., Santana, I., Simões, M.R., and Freitas, S., The assessment of cognitive reserve: A systematic review of the most used quantitative measurement methods of cognitive reserve for aging, Front. Psychol., 2022, vol. 13, p. 847186. https://doi.org/10.3389/fpsyg.2022.847186
Article PubMed PubMed Central Google Scholar
Petersen, R.C., Lopez, O., Armstrong, M.J., Getchius, T.S.D., Ganguli, M., Gloss, D., Gronseth, G.S., Marson, D., Pringsheim, T., Day, G.S., Sager, M., Stevens, J., and Rae-Grant, A., Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation subcommittee of the American Academy of Neurology, Neurology, 2018, vol. 90, no. 3, pp. 126–135. https://doi.org/10.1212/WNL.0000000000004826
Article PubMed PubMed Central Google Scholar
Cabeza, R., Albert, M., Belleville, S., Craik, F.I.M., Duarte, A., Grady, C.L., Lindenberger, U., Nyberg, L., Park, D.C., Reuter-Lorenz, P.A., Rugg, M.D., Steffener, J., and Rajah, M.N., Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci., 2018, vol. 19, no. 11, pp. 701–710. https://doi.org/10.1038/s41583-018-0068-2
Article CAS PubMed PubMed Central Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., and Bäckman, L., Memory aging and brain maintenance, Trends Cogn. Sci., 2012, vol. 16, no. 5, pp. 292–305. https://doi.org/10.1016/j.tics.2012.04.005
Raz, N. and Lindenberger, U., Only time will tell: Cross-sectional studies offer no solution to the age–brain–cognition triangle: Comment on Salthouse (2011), Psychol. Bull., 2011, vol. 137, no. 5, pp. 790–795. https://doi.org/10.1037/a0024503
Article PubMed PubMed Central Google Scholar
Collaboratory on Research Definitions for Cognitive Reserve and Resilience. https://reserveandresilience.com/. Cited on June 24, 2023.
Nucci, M., Mapelli, D., and Mondini, S., Cognitive Reserve Index questionnaire (CRIq): A new instrument for measuring cognitive reserve, Aging Clin. Exp. Res., 2012, vol. 24, no. 3, pp. 218–226. https://doi.org/10.3275/7800
Rami, L., Valls-Pedret, C., Bartrés-Faz, D., Caprile, C., Sole-Padulles, C., Castellvi, M., Olives, J., Bosch, B., and Molinuevo, J.L., Cognitive reserve questionnaire. Scores obtained in a healthy elderly population and in one with Alzheimer’s disease, Rev. Neurol., 2011, vol. 52, no. 4, pp. 195–201. https://doi.org/10.33588/rn.5204.2010478
Valenzuela, M.J. and Sachdev, P., Assessment of complex mental activity across the lifespan: Development of the Lifetime of Experiences Questionnaire (LEQ), Psychol. Med., 2007, vol. 37, no. 7, pp. 1015–1025. https://doi.org/10.1017/S003329170600938X
Relander, K., Mäki, K., Soinne, L., García-García, J., and Hietanen, M., Active lifestyle as a reflection of cognitive reserve: The Modified Cognitive Reserve Scale, Nordic Psychology, 2021, vol. 73, no. 3, pp. 242–252. https://doi.org/10.1080/19012276.2021.1902846
Amoretti, S., Cabrera, B., Torrent, C., Bonnín, C.D.M., Mezquida, G., Garriga, M., Jimenéz, E., Martínez-Arán, A., Solé, B., Reinares, M., Varo, C., Penades, R., Grande, I., Salagre, E., Parellada, E., Bioque, M., Garcia-Rizo, C., Meseguer, A., Anmella, G., Rosa, A.R., Contreras, F., Safont, G., Vieta, E., and Bernardo, M., Cognitive Reserve Assessment Scale in Health (CRASH): Its validity and reliability, J. Clin. Med., 2019, vol. 8, no. 5, p. 586. https://doi.org/10.3390/jcm8050586
Article PubMed PubMed Central Google Scholar
Jack, C.R., Jr., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J.L., Montine, T., Phelps, C., Rankin, K.P., Rowe, C.C., Scheltens, P., Siemers, E., Snyder, H.M., and Sperling, R., Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease, Alzheimers Dement., 2018, vol. 14, no. 4, pp. 535–562. https://doi.org/10.1016/j.jalz.2018.02.018
Article PubMed PubMed Central Google Scholar
Lee, D.H., Seo, S.W., Roh, J.H., Oh, M., Oh, J.S., Oh, S.J., Kim, J.S., and Jeong, Y., Effects of cognitive reserve in Alzheimer’s disease and cognitively unimpaired individuals, Front. Aging Neurosci., 2022, vol. 13, p. 784054. https://doi.org/10.3389/fnagi.2021.784054
Article PubMed PubMed Central Google Scholar
Nelson, M.E., Jester, D.J., Petkus, A.J., and Andel, R., Cognitive reserve, Alzheimer’s neuropathology, and risk of dementia: A systematic review and meta-analysis, Neuropsychol. Rev., 2021, vol. 31, no. 2, pp. 233–250. https://doi.org/10.1007/s11065-021-09478-4
留言 (0)