An acute bout of resistance exercise increases BDNF in hippocampus and restores the long-term memory of insulin-resistant rats

Arazi H, Babaei P, Moghimi M, Asadi A (2021) Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatr 21:1–8. https://doi.org/10.1186/s12877-020-01937-6

Article  CAS  Google Scholar 

Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399–10407. https://doi.org/10.1523/jneurosci.22-23-10399.2002

Article  CAS  Google Scholar 

Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study “recognition memory.” Nat Protoc 1:1306–1311. https://doi.org/10.1038/nprot.2006.205

Article  Google Scholar 

Boitard C, Cavaroc A, Sauvant J et al (2014) Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 40:9–17. https://doi.org/10.1016/j.bbi.2014.03.005

Article  CAS  Google Scholar 

Borges Junior M, Tavares LFJ, Nagata GY et al (2023) Impact of strength training intensity on brain-derived neurotrophic factor. Int J Sports Med. https://doi.org/10.1055/a-2197-1201

Article  Google Scholar 

Capettini SB, Moraes MFD, Prado VF et al (2011) Vesicular acetylcholine transporter knock-down mice show sexual dimorphism on memory. Brain Res Bull 85:54–57. https://doi.org/10.1016/j.brainresbull.2011.02.005

Article  CAS  Google Scholar 

Cassilhas RC, Lee KS, Fernandes J et al (2012a) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317. https://doi.org/10.1016/j.neuroscience.2011.11.029

Article  CAS  Google Scholar 

Cassilhas RC, Lee KS, Venâncio DP et al (2012b) Resistance exercise improves hippocampus-dependent memory. Braz J Med Biol Res 45:1215–1220. https://doi.org/10.1590/S0100-879X2012007500138

Article  CAS  Google Scholar 

Cavaliere G, Trinchese G, Penna E et al (2019) High-fat diet induces neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front Cell Neurosci 13:1–13. https://doi.org/10.3389/fncel.2019.00509

Article  CAS  Google Scholar 

Cefis M, Chaney R, Wirtz J et al (2023) Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 16:1–18. https://doi.org/10.3389/fnmol.2023.1275924

Article  Google Scholar 

Chang YK, Etnier JL (2009) Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol 31:640–656. https://doi.org/10.1123/jsep.31.5.640

Article  Google Scholar 

Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389:2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2

Article  CAS  Google Scholar 

Chen L, Chen R, Wang H, Liang F (2015) Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015:1–9. https://doi.org/10.1155/2015/508409

Article  Google Scholar 

Choi SH, Bylykbashi E, Chatila ZK et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361(6406):eaan8821. https://doi.org/10.1126/science.aan8821

Article  CAS  Google Scholar 

Church DD, Hoffman JR, Mangine GT et al (2016) Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J Appl Physiol 121:123–128. https://doi.org/10.1152/japplphysiol.00233.2016

Article  Google Scholar 

Cirulli F, Berry A, Chiarotti F, Alleva E (2004) Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus 14:802–807. https://doi.org/10.1002/hipo.10220

Article  CAS  Google Scholar 

Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152. https://doi.org/10.2174/156720507780362137

Article  CAS  Google Scholar 

Crunfli F, Mazucanti CH, De Moraes RCM et al (2018) NO-dependent Akt inactivation by S-nitrosylation as a possible mechanism of STZ-induced neuronal insulin resistance. J Alzheimers Dis 65:1427–1443. https://doi.org/10.3233/JAD-180284

Article  CAS  Google Scholar 

Crunfli F, Vrechi TA, Costa AP, Torrão AS (2019) Cannabinoid receptor type 1 agonist ACEA improves cognitive deficit on STZ-induced neurotoxicity through apoptosis pathway and NO modulation. Neurotox Res 35:516–529. https://doi.org/10.1007/s12640-018-9991-2

Article  CAS  Google Scholar 

De Sousa RAL, Improta-Caria AC, de Jesus-Silva FM et al (2020) High-intensity resistance training induces changes in cognitive function, but not in locomotor activity or anxious behavior in rats induced to type 2 diabetes. Physiol Behav 223:1–7. https://doi.org/10.1016/j.physbeh.2020.112998

Article  CAS  Google Scholar 

DeFronzo RA, Ferrannini E, Groop L et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Prim 1:1–23. https://doi.org/10.1038/nrdp.2015.19

Article  Google Scholar 

Dinel AL, André C, Aubert A et al (2011) Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS ONE 6:1–10. https://doi.org/10.1371/journal.pone.0024325

Article  CAS  Google Scholar 

Ding Q, Vaynman S, Akhavan M et al (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833. https://doi.org/10.1016/j.neuroscience.2006.02.084

Article  CAS  Google Scholar 

Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269. https://doi.org/10.1016/S0092-8674(03)00035-7

Article  CAS  Google Scholar 

Elsayed NA, Aleppo G, Aroda VR et al (2023a) 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 46:S19–S40. https://doi.org/10.2337/dc23-S002

Article  CAS  Google Scholar 

Elsayed NA, Aleppo G, Aroda VR et al (2023b) 5. Facilitating positive health behaviors and well-being to improve health outcomes: standards of care in diabetes—2023. Diabetes Care 46:S68–S96. https://doi.org/10.2337/dc23-S005

Article  Google Scholar 

Faria MC, Gonçalves GS, Rocha NP et al (2014) Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. J Psychiatr Res 53:166–172. https://doi.org/10.1016/j.jpsychires.2014.01.019

Article  Google Scholar 

Fonseca VA (2009) Defining and characterizing the progression of type 2 diabetes. Diabetes Care 32(Suppl 2):S151–S156. https://doi.org/10.2337/dc09-s301

Article  Google Scholar 

Fonseca CS, Gusmão ID, Raslan ACS et al (2013) Object recognition memory and temporal lobe activation after delayed estrogen replacement therapy. Neurobiol Learn Mem 101:19–25. https://doi.org/10.1016/j.nlm.2012.12.016

Article  CAS  Google Scholar 

Fu Z, Wu J, Nesil T et al (2017) Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am J Physiol Endocrinol Metab 312:E89–E97. https://doi.org/10.1152/ajpendo.00297.2016

Article  Google Scholar 

Giacco et al (2011) Oxidative stress and diabetic complications Ferdinando NIH Public Access. NIH Public Access Author Manuscr 107:1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545.Oxidative

Article  Google Scholar 

Jeon BT, Jeong EA, Shin HJ et al (2012) Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 61:1444–1454. https://doi.org/10.2337/db11-1498

Article  CAS  Google Scholar 

Lacerda DR, Serakides R, Ocarino NM et al (2015) Osteopetrosis in obese female rats is site-specifically inhibited by physical training. Exp Physiol 100:44–56. https://doi.org/10.1113/expphysiol.2014.082511

Article  Google Scholar 

Leal G, Afonso PM, Salazar IL, Duarte CB (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82–101. https://doi.org/10.1016/j.brainres.2014.10.019

Article  CAS  Google Scholar 

Leenders M, Verdijk LB, van der Hoeven L et al (2013) Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc 14:585–592. https://doi.org/10.1016/j.jamda.2013.02.006

Article  Google Scholar 

Lina M, Jieyu W, Yun L (2015) Insulin resistance and cognitive dysfunction. Clinica Chimica Acta. https://doi.org/10.1016/j.cca.2015.01.027

Article  Google Scholar 

Lindqvist A, Mohapel P, Bouter B et al (2006) High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 13:1385–1388. https://doi.org/10.1111/j.1468-1331.2006.01500.x

Article  CAS  Google Scholar 

Liu Y, Fu X, Lan N et al (2014) Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 267:178–188. https://doi.org/10.1016/j.bbr.2014.02.040

Article  ADS  CAS  Google Scholar 

Lodo L, Moreira A, Bacurau RFP et al (2020) Resistance exercise intensity does not influence neurotrophic factors response in equated volume schemes. J Hum Kinet 74:227–236. https://doi.org/10.2478/hukin-2020-0030

Article  Google Scholar 

Malin SK, Stewart NR, Ude AA, Alderman BL (2022) Brain insulin resistance and cognitive function: influence of exercise. J Appl Physiol 133:1368–1380. https://doi.org/10.1152/japplphysiol.00375.2022

Article  CAS  Google Scholar 

Mehta BK, Singh KK, Banerjee S (2019) Effect of exercise on type 2 diabetes-associated cognitive impairment in rats. Int J Neurosci 129:252–263. https://doi.org/10.1080/00207454.2018.1526795

Article  CAS 

留言 (0)

沒有登入
gif