Evaluation of the theranostic potential of [64Cu]CuCl2 in glioblastoma spheroids

McKinnon C, Nandhabalan M, Murray SA, Plaha P. Glioblastoma: clinical presentation, diagnosis, and management. BMJ. 2021;374: n1560.

Article  PubMed  Google Scholar 

Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):829–48.

Article  CAS  PubMed  Google Scholar 

Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The role of hypoxia in glioblastoma invasion. Cells. 2017;6(4):45.

Article  PubMed  PubMed Central  Google Scholar 

Cilliers K, Muller CJF, Page BJ. Trace element concentration changes in brain tumors: a review. Anat Rec (Hoboken). 2020;303(5):1293–9.

Article  CAS  PubMed  Google Scholar 

Turecký L, Kalina P, Uhlíková E, Námerová S, Krizko J. Serum ceruloplasmin and copper levels in patients with primary brain tumors. Klin Wochenschr. 1984;62(4):187–9.

Article  PubMed  Google Scholar 

Mulware SJ. Comparative trace elemental analysis in cancerous and noncancerous human tissues using PIXE. J Biophys. 2013;2013: 192026.

Article  PubMed  PubMed Central  Google Scholar 

Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96.

Article  CAS  PubMed  Google Scholar 

Pasquali M, Martini P, Shahi A, Jalilian AR, Osso JA, Boschi A. Copper-64 based radiopharmaceuticals for brain tumors and hypoxia imaging. Q J Nucl Med Mol Imaging. 2020;64(4):371–81.

Article  PubMed  Google Scholar 

Ferrari C, Asabella AN, Villano C, Giacobbi B, Coccetti D, Panichelli P, et al. Copper-64 dichloride as theranostic agent for glioblastoma multiforme: a preclinical study. Biomed Res Int. 2015;2015: 129764.

Article  PubMed  PubMed Central  Google Scholar 

Holland JP, Ferdani R, Anderson CJ, Lewis JS. Copper-64 Radiopharmaceuticals for Oncologic Imaging. PET Clin. 2009;4(1):49–67.

Article  PubMed  PubMed Central  Google Scholar 

Chakravarty R, Chakraborty S, Dash A. 64Cu2+ Ions as PET probe: an emerging paradigm in molecular imaging of cancer. Mol Pharm. 2016;13(11):3601–12.

Article  CAS  PubMed  Google Scholar 

Gangemi V, Mignogna C, Guzzi G, Lavano A, Bongarzone S, Cascini GL, et al. Impact of [64Cu][Cu(ATSM)] PET/CT in the evaluation of hypoxia in a patient with Glioblastoma: a case report. BMC Cancer. 2019;19(1):1197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl 5):10–7.

Article  CAS  PubMed  Google Scholar 

Pérès EA, Toutain J, Paty LP, Divoux D, Ibazizène M, Guillouet S, et al. 64 Cu-ATSM/64Cu-Cl2 and their relationship to hypoxia in glioblastoma: a preclinical study. EJNMMI Res. 2019;9(1):114.

Article  PubMed  PubMed Central  Google Scholar 

Pinto CIG, Bucar S, Alves V, Fonseca A, Abrunhosa AJ, da Silva CL, et al. Copper-64 chloride exhibits therapeutic potential in three-dimensional cellular models of prostate cancer. Front Mol Biosci. 2020;7: 609172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panichelli P, Villano C, Cistaro A, Bruno A, Barbato F, Piccardo A, et al. Imaging of brain tumors with copper-64 chloride: early experience and results. Cancer Biother Radiopharm. 2016;31(5):159–67.

CAS  PubMed  Google Scholar 

Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Alves F, Alves V, Carmo D, Neves S, et al. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Mod Phys Lett A. 2017;32(17):21.

Article  Google Scholar 

Alves VH, Do Carmo SJC, Alves F, Abrunhosa AJ. Automated purification of radiometals produced by liquid targets. Instruments. 2018;2(3):17.

Article  CAS  Google Scholar 

Chen W, Wong C, Vosburgh E, Levine AJ, Foran DJ, Xu EY. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. J Vis Exp. 2014;8(89):e51639.

Google Scholar 

Guerreiro JF, Alves V, Abrunhosa AJ, Paulo A, Gil OM, Mendes F. Radiobiological characterization of 64 CuCl2 as a simple tool for prostate cancer theranostics. Molecules. 2018;23(11):2944.

Article  PubMed  PubMed Central  Google Scholar 

Alexiou GA, Lazari D, Markopoulos G, Vartholomatos E, Hodaj E, Galani V, et al. Moschamine inhibits proliferation of glioblastoma cells via cell cycle arrest and apoptosis. Tumour Biol. 2017;39(5):1010428317705744.

Article  PubMed  Google Scholar 

Yilmazer A. Evaluation of cancer stemness in breast cancer and glioblastoma spheroids in vitro. 3 Biotech. 2018;8(9):390.

Article  PubMed  PubMed Central  Google Scholar 

de Kruijff RM, van der Meer AJGM, Windmeijer CAA, Kouwenberg JJM, Morgenstern A, Bruchertseifer F, et al. The therapeutic potential of polymersomes loaded with 225Ac evaluated in 2D and 3D in vitro glioma models. Eur J Pharm Biopharm. 2018;127:85–91.

Article  PubMed  Google Scholar 

Däster S, Amatruda N, Calabrese D, Ivanek R, Turrini E, Droeser RA, et al. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget. 2017;8(1):1725–36.

Article  PubMed  Google Scholar 

Barisam M, Saidi MS, Kashaninejad N, Nguyen NT. Prediction of necrotic core and hypoxic zone of multicellular spheroids in a microbioreactor with a U-shaped barrier. Micromachines (Basel). 2018;9(3):94.

Article  PubMed  PubMed Central  Google Scholar 

Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X, Balakirev MY. High-content monitoring of drug effects in a 3D spheroid model. Front Oncol. 2017;7:293.

Article  PubMed  PubMed Central  Google Scholar 

Catalogna G, Talarico C, Dattilo V, Gangemi V, Calabria F, D’Antona L, et al. The SGK1 kinase inhibitor si113 sensitizes theranostic effects of the 64CuCl2 in human glioblastoma multiforme cells. Cell Physiol Biochem. 2017;43(1):108–19.

Article  CAS  PubMed  Google Scholar 

Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miki K, Yagi M, Yoshimoto K, Kang D, Uchiumi T. Mitochondrial dysfunction and impaired growth of glioblastoma cell lines caused by antimicrobial agents inducing ferroptosis under glucose starvation. Oncogenesis. 2022;11(1):59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y, Olivi L, Cheong JH, Maertens A, Bressler JP. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells. Toxicol Appl Pharmacol. 2007;220(3):349–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int. 2013;62(5):556–65.

Article  CAS  PubMed  Google Scholar 

Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Sci. 2017;108(3):283–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T. Cancer stem cell hierarchy in glioblastoma multiforme. Front Surg. 2016;3:21.

PubMed  PubMed Central  Google Scholar 

Kang MK, Kang SK. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev. 2007;16(5):837–47.

Article  CAS  PubMed  Google Scholar 

DeSouza LV, Matta A, Karim Z, Mukherjee J, Wang XS, Krakovska O, et al. Role of moesin in hyaluronan induced cell migration in glioblastoma multiforme. Mol Cancer. 2013;12:74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breyer R, Hussein S, Radu DL, Pütz KM, Gunia S, Hecker H, et al. Disruption of intracerebral progression of C6 rat glioblastoma by in vivo treatment with anti-CD44 monoclonal antibody. J Neurosurg. 2000;92(1):140–9.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif