Celecoxib attenuates hindlimb unloading-induced muscle atrophy via suppressing inflammation, oxidative stress and ER stress by inhibiting STAT3

Chen H, Qian Z, Zhang S, Tang J, Fang L, Jiang F, Ge D, Chang J, Cao J, Yang L et al (2021) Silencing COX-2 blocks PDK1/TRAF4-induced AKT activation to inhibit fibrogenesis during skeletal muscle atrophy. Redox Biol 38:101774

Article  Google Scholar 

Cheng H, Huang H, Guo Z, Chang Y, Li Z (2021) Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 11:8836–8854

Article  CAS  PubMed Central  Google Scholar 

Cui Q, Yang H, Gu Y, Zong C, Chen X, Lin Y, Sun H, Shen Y, Zhu J (2020) RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. Ann Transl Med 8:1595

Article  CAS  PubMed Central  Google Scholar 

Desaphy JF, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, Dinardo MM, Camerino GM, Ricciuti P, Brocca L, Pellegrino MA et al (2010) Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res 61:553–563

Article  CAS  Google Scholar 

Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29:1669–1681

Article  CAS  PubMed Central  Google Scholar 

Eggelbusch M, Shi A, Broeksma BC, Vazquez-Cruz M, Soares MN, de Wit GMJ, Everts B, Jaspers RT, Wust RCI (2022) The nlrp3 inflammasome contributes to inflammation-induced morphological and metabolic alterations in skeletal muscle. J Cachexia Sarcopenia Muscle 13:3048–3061

Article  PubMed Central  Google Scholar 

Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW, Lin CL, Lo YC (2021) Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-kappaB/TNF-alpha and regulating protein synthesis/degradation pathway. Br J Pharmacol 178:2998–3016

Article  CAS  Google Scholar 

Farooq F, Abadia-Molina F, MacKenzie D, Hadwen J, Shamim F, O’Reilly S, Holcik M, MacKenzie A (2013) Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum Mol Genet 22:3415–3424

Article  CAS  Google Scholar 

Franco-Romero A, Sandri M (2021) Role of autophagy in muscle disease. Mol Aspects Med 82:101041

Article  CAS  Google Scholar 

Gallot YS, Bohnert KR (2021) Confounding roles of ER stress and the unfolded protein response in skeletal muscle atrophy. Int J Mol Sci 22:2567

Article  CAS  PubMed Central  Google Scholar 

Gao S, Zhang G, Zhang Z, Zhu JZ, Li L, Zhou Y, Rodney GG Jr, Abo-Zahrah RS, Anderson L, Garcia JM et al (2022) Ubr2 targets myosin heavy chain IIb and IIx for degradation: molecular mechanism essential for cancer-induced muscle wasting. Proc Natl Acad Sci USA 119:e2200215119

Article  CAS  PubMed Central  Google Scholar 

Gonzalez-Jamett A, Vasquez W, Cifuentes-Riveros G, Martinez-Pando R, Saez JC, Cardenas AM (2022) Oxidative stress, inflammation and connexin hemichannels in muscular dystrophies. Biomedicines 10:507

Article  CAS  PubMed Central  Google Scholar 

Guadagnin E, Mazala D, Chen YW (2018) Stat3 in skeletal muscle function and disorders. Int J Mol Sci 19:2265

Article  PubMed Central  Google Scholar 

Huang Z, Zhong L, Zhu J, Xu H, Ma W, Zhang L, Shen Y, Law BY, Ding F, Gu X et al (2020) Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Ann Transl Med 8:1681

Article  CAS  PubMed Central  Google Scholar 

Huang L, Li M, Deng C, Qiu J, Wang K, Chang M, Zhou S, Gu Y, Shen Y, Wang W et al (2022) Potential therapeutic strategies for skeletal muscle atrophy. Antioxidants 12:44

Article  PubMed Central  Google Scholar 

Ji Y, Li M, Chang M, Liu R, Qiu J, Wang K, Deng C, Shen Y, Zhu J, Wang W et al (2022) Inflammation: roles in skeletal muscle atrophy. Antioxidants 11:1686

Article  CAS  PubMed Central  Google Scholar 

Kaneguchi A, Umehara T, Yamaoka K, Ozawa J (2022) Bilateral muscle atrophy after anterior cruciate ligament reconstruction in rats: protective effects of anti-inflammatory drug celecoxib. Knee 35:201–212

Article  Google Scholar 

Krasselt M, Baerwald C (2019) Celecoxib for the treatment of musculoskeletal arthritis. Expert Opin Pharmacother 20:1689–1702

Article  CAS  Google Scholar 

Lee PHU, Chung M, Ren Z, Mair DB, Kim DH (2022) Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 322:C567–C580

Article  CAS  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

Article  CAS  Google Scholar 

Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S, Gallouzi IE (2017) STAT3 promotes IFNgamma/TNFalpha-induced muscle wasting in an NF-kappab-dependent and IL-6-independent manner. EMBO Mol Med 9:622–637

Article  CAS  PubMed Central  Google Scholar 

Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10:507–515

Article  CAS  Google Scholar 

Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL et al (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670

Article  ADS  CAS  Google Scholar 

Peladeau C, Adam NJ, Jasmin BJ (2018) Celecoxib treatment improves muscle function in MDX mice and increases utrophin A expression. FASEB J 32:5090–5103

Article  Google Scholar 

Riley JS, Tait SW (2020) Mitochondrial DNA in inflammation and immunity. EMBO Rep 21:e49799

Article  CAS  PubMed Central  Google Scholar 

Rom O, Reznick AZ (2016) The role of e3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radical Biol Med 98:218–230

Article  CAS  Google Scholar 

Romanello V, Sandri M (2010) Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 12:433–439

Article  CAS  Google Scholar 

Sartori R, Romanello V, Sandri M (2021) Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 12:330

Article  ADS  CAS  PubMed Central  Google Scholar 

Shen Y, Zhang R, Xu L, Wan Q, Zhu J, Gu J, Huang Z, Ma W, Shen M, Ding F et al (2019a) Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front Physiol 10:1298

Article  PubMed Central  Google Scholar 

Shen S, Liao Q, Liu J, Pan R, Lee SM, Lin L (2019b) Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J Cachexia Sarcopenia Muscle 10:429–444

Article  PubMed Central  Google Scholar 

Shen Y, Li M, Wang K, Qi G, Liu H, Wang W, Ji Y, Chang M, Deng C, Xu F et al (2022) Diabetic muscular atrophy: molecular mechanisms and promising therapies. Front Endocrinol 13:917113

Article  Google Scholar 

Shimada N, Sakata A, Igarashi T, Takeuchi M, Nishimura S (2020) M1 macrophage infiltration exacerbate muscle/bone atrophy after peripheral nerve injury. BMC Musculoskelet Disord 21:44

Article  CAS  PubMed Central  Google Scholar 

Sun J, Yang H, Yang X, Chen X, Xu H, Shen Y, Ding F, Gu X, Zhu J, Sun H (2021) Global alternative splicing landscape of skeletal muscle atrophy induced by hindlimb unloading. Ann Transl Med 9:643

Article  CAS  PubMed Central  Google Scholar 

Thoma A, Lightfoot AP (2018) Nf-kb and inflammatory cytokine signalling: role in skeletal muscle atrophy. Adv Exp Med Biol 1088:267–279

Article  CAS  Google Scholar 

Wan Q, Zhang L, Huang Z, Zhang H, Gu J, Xu H, Yang X, Shen Y, Law BY, Zhu J et al (2020) Aspirin alleviates denervation-induced muscle atrophy via regulating the Sirt1/PGC-1α axis and STAT3 signaling. Ann Transl Med 8:1524

Article  CAS  PubMed Central  Google Scholar 

Wang W, Shen D, Zhang L, Ji Y, Xu L, Chen Z, Shen Y, Gong L, Zhang Q, Shen M et al (2022) SKP-SC-EVs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxidants 11:66

Article  Google Scholar 

Wang K, Liu Q, Tang M, Qi G, Qiu C, Huang Y, Yu W, Wang W, Sun H, Ni X et al (2023) Chronic kidney disease-induced muscle atrophy: molecular mechanisms and promising therapies. Biochem Pharmacol 208:115407

Article  CAS  Google Scholar 

Yao C, Narumiya S (2019) Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol 176:337–354

Article  CAS  Google Scholar 

Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G (2021) Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res 172:105807

Article  CAS  Google Scholar 

Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, Horng T (2014) Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA 111:15514–15519

Article  ADS  CAS  PubMed Central  Google Scholar 

Zhang L, Li M, Wang W, Yu W, Liu H, Wang K, Chang M, Deng C, Ji Y, Shen Y et al (2022) Celecoxib alleviates denervation-induced muscle atrophy by suppressing inflammation and oxidative stress and improving microcirculation. Biochem Pharmacol 203:115186

留言 (0)

沒有登入
gif