High-entropy materials for energy and electronic applications

Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

Article  Google Scholar 

Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

Article  CAS  Google Scholar 

Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

Article  ADS  CAS  PubMed  Google Scholar 

George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

Article  ADS  CAS  Google Scholar 

Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

Article  ADS  CAS  Google Scholar 

Brahlek, M. et al. What is in a name: defining ‘high entropy’ oxides. Apl. Mater. 10, 110902 (2022).

Article  ADS  CAS  Google Scholar 

Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).

Article  ADS  CAS  PubMed  Google Scholar 

Aamlid, S. S., Oudah, M., Rottler, J. & Hallas, A. M. Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145, 5991–6006 (2023).

Article  CAS  PubMed  Google Scholar 

Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

Article  ADS  CAS  Google Scholar 

Spurling, R. J., Lass, E. A., Wang, X. & Page, K. Entropy-driven phase transitions in complex ceramic oxides. Phys. Rev. Mater. 6, 090301 (2022).

Article  CAS  Google Scholar 

Ma, D., Grabowski, B., Körmann, F., Neugebauer, J. & Raabe, D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015).

Article  ADS  CAS  Google Scholar 

Körmann, F., Ikeda, Y., Grabowski, B. & Sluiter, M. H. F. Phonon broadening in high entropy alloys. npj Comput. Mater. 3, 1–9 (2017).

Article  Google Scholar 

Chang, C.-C. et al. Lattice distortion or cocktail effect dominates the performance of tantalum-based high-entropy nitride coatings. Appl. Surf. Sci. 577, 151894 (2022).

Article  CAS  Google Scholar 

Braun, J. L. et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. 30, 1805004 (2018).

Article  Google Scholar 

Ning, Y. et al. Achieving high energy storage properties in perovskite oxide via high-entropy design. Ceram. Int. 49, 12214–12223 (2023).

Article  CAS  Google Scholar 

Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).

Article  Google Scholar 

Xiang, H. et al. High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram. 10, 385–441 (2021).

Article  CAS  Google Scholar 

Wang, J. et al. P2-type layered high-entropy oxides as sodium-ion cathode materials. Mater. Futur. 1, 035104 (2022).

Article  ADS  Google Scholar 

Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

Article  ADS  CAS  PubMed  Google Scholar 

Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. High‐entropy layered oxide cathodes for sodium‐ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).

Article  CAS  Google Scholar 

Fu, F. et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13, 2826 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ding, F. et al. Using high-entropy configuration strategy to design na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144, 8286–8295 (2022).

Article  CAS  PubMed  Google Scholar 

Ma, Y. et al. High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021).

Article  Google Scholar 

Amiri, A. & Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 9, 782–823 (2021).

Article  CAS  Google Scholar 

Lin, L. et al. High‐entropy sulfides as electrode materials for Li‐ion batteries. Adv. Energy Mater. 12, 2103090 (2022).

Article  CAS  Google Scholar 

Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Cui, Y. et al. High entropy fluorides as conversion cathodes with tailorable electrochemical performance. J. Energy Chem. 72, 342–351 (2022).

Article  CAS  Google Scholar 

Petrovičovà, B. et al. High-entropy spinel oxides produced via sol-gel and electrospinning and their evaluation as anodes in Li-ion batteries. Appl. Sci. 12, 5965 (2022).

Article  Google Scholar 

Triolo, C., Xu, W., Petrovičovà, B., Pinna, N. & Santangelo, S. Evaluation of entropy‐stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides produced via solvothermal method or electrospinning as anodes in lithium‐ion batteries. Adv. Funct. Mater. 32, 2202892 (2022).

Article  CAS  Google Scholar 

Wang, K. et al. Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14, 1487 (2023).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Q. et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019).

Article  CAS  Google Scholar 

Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

Article  ADS  CAS  PubMed  Google Scholar 

Ma, Y. et al. Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium‐ion batteries. Adv. Funct. Mater. 32, 2202372 (2022).

Article  CAS  Google Scholar 

Ma, Y. et al. High‐entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021).

Article  CAS  Google Scholar 

Du, M. et al. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium–sulfur batteries. Angew. Chem. 134, e202209350 (2022).

Article  Google Scholar 

Xing, J., Zhang, Y., Jin, Y. & Jin, Q. Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 16, 2486–2494 (2023).

Article  ADS  CAS  Google Scholar 

Varzi, A., Mattarozzi, L., Cattarin, S., Guerriero, P. & Passerini, S. 3D porous Cu–Zn alloys as alternative anode materials for Li-Ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018).

Article  Google Scholar 

Wei, Y. et al. Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries. J. Alloy. Compd. 938, 168610 (2023).

Article  CAS  Google Scholar 

Osenciat, N. et al. Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity. J. Am. Ceram. Soc. 102, 6156–6162 (2019).

Article  CAS  Google Scholar 

Biesuz, M. et al. Ni-free high-entropy rock salt oxides with Li superionic conductivity. J. Mater. Chem. A 10, 23603–23616 (2022).

Article  CAS  Google Scholar 

Grzesik, Z. et al. Defect structure and transport properties in (Co,Cu,Mg,Ni,Zn)O high entropy oxide. J. Eur. Ceram. Soc. 39, 4292–4298 (2019).

Article  CAS  Google Scholar 

Zeng, Y. et al. High-entropy mechanism to boost ionic conductivity. Science 378, 1320–1324 (2022).

Article  ADS  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif