Tunable moiré materials for probing Berry physics and topology

Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021). This review discusses using the tunability of moiré heterostructures to experimentally simulate different fundamental many-body quantum models in condensed matter.

Article  CAS  Google Scholar 

He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).

Article  CAS  PubMed  Google Scholar 

Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018). This theoretical study identifies possible 2D materials.

Article  CAS  PubMed  Google Scholar 

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). This review provides an early overview of 2D materials research.

Article  CAS  PubMed  Google Scholar 

Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). This review provides an overview of the emerging 2D materials research.

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

Article  CAS  Google Scholar 

Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

Article  CAS  PubMed  Google Scholar 

Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

Article  CAS  Google Scholar 

Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). This paper provides the first experimental demonstration of a correlated insulator arising in a moiré superlattice.

Article  CAS  PubMed  Google Scholar 

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). This paper reports the first observation of superconductivity in flat bands of a moiré superlattice.

Article  CAS  PubMed  Google Scholar 

Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020). This paper reports the observation of the quantized anomalous Hall effect in a moiré superlattice.

Article  CAS  PubMed  Google Scholar 

Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). This paper reports the observation of the anomalous Hall effect in a moiré superlattice.

Article  CAS  PubMed  Google Scholar 

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). This review covers the different mechanisms responsible for the anomalous Hall effect observed in non-moiré materials.

Article  Google Scholar 

von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986). This review discusses the quantum Hall effect.

Article  Google Scholar 

Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010). This review provides a pedagogical introduction to Berry physics and its experimental effects.

Article  CAS  Google Scholar 

Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

Article  CAS  PubMed  Google Scholar 

Wang, N. et al. Quantum metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

Article  CAS  PubMed  Google Scholar 

Liu, J., Ma, Z., Gao, J. & Dai, X. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X 9, 031021 (2019).

CAS  Google Scholar 

Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015). This paper theoretically proposes second-harmonic Hall voltage generation owing to the Berry curvature dipole.

Article  PubMed  Google Scholar 

Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765–770 (2022). This paper reports the experimental detection of a topological transition in a moiré material, probed using the Berry curvature dipole.

Article  CAS  Google Scholar 

Bhalla, P., Das, K., Culcer, D. & Agarwal, A. Resonant second-harmonic generation as a probe of quantum geometry. Phys. Rev. Lett. 129, 227401 (2022).

Article  CAS  PubMed  Google Scholar 

Ahn, J., Guo, G.-Y., Nagaosa, N. & Vishwanath, A. Riemannian geometry of resonant optical responses. Nat. Phys. 18, 290–295 (2022).

Article  CAS  Google Scholar 

Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

Article  CAS  Google Scholar 

Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002).

Article  CAS  PubMed  Google Scholar 

Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79, 066501 (2016).

Article  PubMed  Google Scholar 

Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

Bernevig, B. A. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

Article  CAS  Google Scholar 

Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). This paper presents a theoretical study of the Berry phase inducing a valley-dependent Hall transport.

Article  PubMed  Google Scholar 

Sinha, S. et al. Bulk valley transport and Berry curvature spreading at the edge of flat bands. Nat. Commun. 11, 5548 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015). This theoretical study highlights that moiré bands can be topological.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolf, T. M. R., Zilberberg, O., Levkivskyi, I. & Blatter, G. Substrate-induced topological minibands in graphene. Phys. Rev. B 98, 125408 (2018).

Article  CAS  Google Scholar 

Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

Article  CAS  Google Scholar 

Chittari, B. L., Chen, G., Zhang, Y., Wang, F. & Jung, J. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys. Rev. Lett. 122, 016401 (2019).

Article  CAS  PubMed  Google Scholar 

Zhang, S., Dai, X. & Liu, J. Spin-polarized nematic order, quantum valley Hall states, and field-tunable topological transitions in twisted multilayer graphene systems. Phys. Rev. Lett. 128, 026403 (2022).

Article  CAS  PubMed  Google Scholar 

Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

Article  CAS  PubMed  Google Scholar 

Zhu, J., Su, J.-J. & MacDonald, A. Voltage-controlled magnetic reversal in orbital Chern insulators. Phys. Rev. Lett. 125, 227702 (2020).

Article  CAS  PubMed  Google Scholar 

Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

Article  CAS  PubMed  Google Scholar 

Adak, P. C. et al. Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands. Nat. Commun. 13, 7781 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao, Z. et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

Article  CAS  PubMed  Google Scholar 

Mannaï, M., Fuchs, J.-N., Piéchon, F. & Haddad, S. Stacking-induced Chern insulator. Phys. Rev. B 107, 045117 (2023).

Article  Google Scholar 

Stauber, T., Low, T. & Gómez-Santos, G. Chiral response of twisted bilayer graphene. Phys. Rev. Lett. 120, 046801 (2018).

Article  CAS  PubMed  Google Scholar 

Crosse, J. A., Nakatsuji, N., Koshino, M. & Moon, P. Hofstadter butterfly and the quantum Hall effect in twisted double bilayer graphene. Phys. Rev. B 102, 035421 (2020).

Article 

留言 (0)

沒有登入
gif